We have previously demonstrated that Th17 cells, which produce IL-17A, are significantly elevated in peripheral blood and bone marrow (BM) of patients with Multiple Myeloma (MM) and IL-17A promotes MM cell growth and survival, both in vitro and in vivo via IL-17A receptor. We have recently evaluated and observed that anti-IL-17A monoclonal antibody (mAb) significantly inhibited MM cell growth in vitro, while IL-17A induced proliferation of MM cells compared to control. We have also observed significant down-regulation of IL-6 production by anti-IL-17A mAb in MM-BMSC co-culture. Importantly, the administration of anti-IL-17A mAb weekly for 4 weeks in the SCIDhu model of human myeloma, where MM cells grow within the human microenvironment in mice led to a significant inhibition of tumor growth compared to the control mice. This remarkable activity of anti-IL17 mAb raised the question of whether the myeloma cells themselves are a possible source of IL-17. In this study, we used transcriptome sequencing (RNA-Seq) data to evaluate the expression of IL-17A in primary CD138+ myeloma cells (N=17) compared to normal plasma cells (NPC) (N=5). Whereas none of the NPCs expressed IL-17A, it was significantly over-expressed in majority of MM cells. In addition, these data also showed that the expression of other IL-17 family members (IL-7B, C, D, E & F) and Th17-associated pro-inflammatory cytokines (IL-21, IL-22 & IL-23) were not significantly elevated in primary myeloma cells compared to normal donor plasma cells. We further validated these observations by IL-17 immunoblot showing IL17 expression in all MM cell lines and 10 out of 14 primary patient MM cells; confirmed IL-17 expression in MM cells by quantitative RT-PCR, and flow cytometry and by immuno-histochemistry and confocal microscopy. We observed that IL-17 knock down by IL-17-specific siRNA inhibited MM cell growth as well as their ability to induce IL-6 production in co-cultures with BMSC. Finally, expression profile data from 172 uniformly treated patients showed that patients with lower IL-17A expression had superior overall survival compared to those with higher expression. These data confirms that MM cells express IL-17 and targeting it with a mAb will abrogate the autocrine loop making it an attractive therapeutic target.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution