Abstract 1851

Background:

The proteasome inhibitor Bortezomib (Bz) shows significant activity in Multiple Myeloma (MM) by acting on MM cell directly as well as by augmenting bone formation in vitro and in vivo. Its effect on the bone could be traced to promoting differentiation of mesenchymal stem cells into osteoblast cells by regulating BMP2 and canonical Wnt signaling. However, the molecular mechanism mediating the direct anti-MM activity of Bz remains to be fully understood. Initially the rationale for the use of Bz in MM was inhibition of NF-kB signaling, yet subsequent studies showed that Bz actually induces activation of this pathway. In this study, we examined whether Bz regulates the activity of canonical Wnt signaling pathway in MM and whether the growth-inhibition effect of Bz was associated with activation of this pathway by using multiple MM cell lines including EJM, H929, INA6, KMS28BM, JJN3, L363, OPM1, OPM2, RPMI8226, UTMC, XG2 and XG6 as well as primary plasma cells (PC) from six patients with newly diagnosed MM.

Methods/Results:

Immunoblotting demonstrated that Bz induces stabilization of b-catenin protein in three MM cell lines (H929, OPM2 and UTMC) in a time- and dose-dependent manner. These changes were not seen when the same cell lysate were immunoblotted for other catenin family members, a-catenin and g-catenin. Increased levels of b-catenin protein response to Bz treatment were observed in other 9 MM cell lines (EJM, INA6, KMS28BM, JJN3, L363, OPM1, RPMI8226, XG2 and XG6) and in the 6 CD138+ sorted bone marrow PC from patients with MM. To determine if Bz regulation of b-catenin level is a specific effect of the inhibition of 26S proteasome subunit we treated the same MM cell lines with another proteasome inhibitor, MG132. Similar results were observed in response to MG132 for all four MM cell lines, suggesting the effect of Bz on b-catenin protein is 26S proteosome inhibitor specific. Increases in b-catenin protein levels in MM cells were not due to increased Ctnnb1/CTNNB (b-catenin) gene transcription as b-catenin mRNA did not change in these cells treated with Bz. These results indicate that proteasome inhibition increases b-catenin is independent of transcriptional upregulation.

To determine whether Bz induces the nuclear localization and transcriptional activity of b-catenin, cells were incubated with Bz for 6 hours and then fractionated to separate the nuclear and cytoplasmic fractions. Treatment with Bz resulted an increase in nuclear b-catenin as well as b-catenin in cytoplasm in four cell lines including H929, INA6, OPM1 and MM144. Increase in cytoplasmic and nuclear b-catenin was further confirmed by immunofluorescence with antibodies specific for active form of b-catenin. To determine whether Bz affects b-catenin-mediated transcriptional activity, we used a TCF/LEF luciferase reporter construct cloned in lentiviral vector. OPM2 cells were infected with lentiviral particle containing the TCF reporter or containing empty vector and were then treated with serial concentrations of Bz. The luciferase activity exhibited a dose-dependent response to Bz analogous to the stabilization of b-catenin. Similar results were observed in 7 out of 8 MM cell lines compared with untreated control. Stimulation of TCF transcriptional activity by Bz was independent of modifiers of extracellular Wnt ligands, such as Frizzled receptors, LRP5/6 co-receptors and sFRPs or the activation of intracellular GSK3b.

Conclusion:

These results indicate that Bz augments activation of canonical Wnt signaling by preventing b-catenin protein from proteosome-mediated degradation in MM cells. Concentrations of Bz for stimulating TCF transcriptional activity are comparable to those being used to induce inhibition of MM proliferation. Experiments modulating cytoplasmic as well as the nuclear players and interactions of the Wnt-pathway are ongoing to determine if Bz mediated activation of b-catenin signaling is responsible for its direct anti-MM effect.

Disclosures:

Barlogie:Celgene, Genzyme, Novartis, Millennium: Consultancy, Honoraria, Patents & Royalties. Shaughnessy:Myeloma Health, Celgene, Genzyme, Novartis: Consultancy, Employment, Equity Ownership, Honoraria, Patents & Royalties.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution