Abstract 1655

Mantle cell lymphoma (MCL) is characterized by aberrant cyclin D1 expression due to the t (11: 14) translocation. In conjunction with elevation of CDK4/CDK6, this promotes cell cycle progression through G1 and unrestrained cell proliferation. As MCL remains incurable despite initial response to therapy, mechanism- and genome-based therapies that both control the cell cycle and enhance cytotoxic killing are urgently needed. We have recently developed such a regimen by inhibition of CDK4/CDK6 with PD 0332991 (PD), a selective inhibitor of CDK4 and CDK6 that is also potent, reversible and orally bioavailable. We demonstrate that 1) inhibition of CDK4/CDK6 with PD leads to early G1 arrest; 2) upon release of the G1 block, synchronous cell cycle progression to S phase occurs; and 3) S phase synchronization following prolonged early G1 arrest (pG1-S) sensitizes MCL cells to killing by diverse clinically relevant agents at reduced doses, including proteasome inhibitors bortezomib and carfilzomib, and the nucleoside analog Ara-C (cytarabine), both in vitro and in a mouse model of MCL. These findings implicate a unified mechanism for cell cycle sensitization of cytotoxic killing.

To elucidate the underpinning mechanism, we show that sensitization to cytotoxic killing by CDK4/CDK6 inhibition requires an intact Rb, the substrate of CDK4/CDK6, but is independent of p53. Gene expression profiling and quantitative RNA and protein analyses further demonstrate that prolonged inhibition of CDK4/CDK6 with PD halts the gene expression program in early G1 and depletes the expression of genes programmed for other phases of the cell cycle, such as cyclin A (G1/S), thymidine kinase (S), CDK1 and cyclin B (G2/M) and selective metabolic genes. Removal of PD restores the CDK4/CDK6 activities and the expression of scheduled cell cycle genes but leaves many others in the pG1 state. This leads to S phase synchronization with impaired metabolism. Accordingly, the magnitude of bortezomib and Ara-C killing in pG1-S greatly exceeds the enrichment of S phase cells. Selective inhibition of CDK4/CDK6, therefore, sensitizes MCL cells for cytotoxic killing in S phase synchronization through induction of a persistent metabolic imbalance in prior pG1.

pG1 alone induces caspase activation moderately in MCL cells, but markedly augments apoptosis induced by either bortezomib or Ara-C in pG1-S. This enhancement of apoptosis is apparently mediated by an alteration of the ratios of pro-apoptotic BH3-only proteins (Bim, Noxa and Puma) to anti-apoptotic proteins (Mcl-1, Bcl-2 and Bcl-xL), which lowers the threshold for caspase-9 activation. Importantly, Bim is selectively required to sensitize MCL cells for killing by bortezomib, but not Ara-C, at low doses as indicated in studies of Bim-deficient MCL cell lines. Corroborating these findings, loss of one allele of Bim attenuates the enhancement of bortezomib killing in pG1-S in untransformed primary mouse B cells after activation by BCR and CD40 signaling. Thus, the synergistic actions of PD-bortezomib and PD-AraC in MCL therapy are distinguishable by the requirement for Bim.

Furthermore, we found that the three Bim isoforms are expressed at variable levels but undetected in 30% of primary MCL tumor cells, consistent with the reported mutations and bi-allelic deletion of Bim (BCL2L11) in MCL. RNA-Seq analysis of samples from patients enrolled in a phase I study of PD in combination with bortezomib in MCL further reveals that the mutation burden in BCL2L11 is ∼3-fold higher in a clinically non-responder compared with a responder. Collectively, our data demonstrate that by halting scheduled gene expression in prolonged early G1 arrest, selective and reversible inhibition of CDK4/CDK6 provides a mechanism-based strategy to sensitize MCL cells for cytotoxic killing by bortezomib, Ara-C, and potentially other emerging agents. By lowering the threshold for caspase activation, Bim is selectively required for sensitization to killing by low dose bortezomib, but not Ara-C, and may serve as a biomarker for genome-based selection of cytotoxic partners in therapeutic targeting of CDK4/CDK6 in MCL.

Disclosures:

Martin:Millennium Pharmaceuticals, Inc.: Research Funding, Speakers Bureau. Smith:Pfizer: Research Funding; Millenium: Research Funding. Leonard:Pfizer, Inc.: Consultancy; Millenium: Consultancy; Johnson and Johnson: Consultancy; Onyx: Consultancy. Chen-Kiang:Pfizer, Inc.: Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution