Abstract 1209

Chronic myeloid leukemia (CML) is a myeloproliferative disease that originate in hematopoietic stem cells (HSCs) as a result of the t(9;22) translocation, giving rise to the Ph (Philadelphia chromosome) and BCR-ABL oncoprotein. Although treatment of CML patients with tyrosine kinase inhibitor can efficiently eliminate most leukemic cells, chemoresistant leukemic stem cells (LSCs) can survive and drive recurrence of CML in these patients. A number of genes have been described to promote or inhibit proliferation of LSCs. Some of them have similar roles in normal HSCs. The transcription factor ELF4 promotes cell cycle entry of quiescent HSCs during homeostasis (Lacorazza et al., 2006). Thus, to investigate the function of ELF4 in CML initiation and maintenance, we developed a BCR-ABL-induced CML-like disease using retroviral transfer of BCR-ABL in Elf4-null bone marrow (BM) cells. We first investigated whether ELF4 is required for the induction of CML. Recipient mice of BCR-ABL-transduced WT BM cells developed CML and died with a latency 16–23 days, whereas recipient mice of BCR-ABL-transduced Elf4-/- BM cells showed longer latency of 45–47 days (n=20; p<0.0005). Progression of leukemia was monitored in peripheral blood, BM and spleen by flow cytometry. In mice transplanted with BCR-ABL-transduced Elf4-null BM cells, Gr-1+ leukemic cells expanded the first two weeks after BM transplantation followed by a decline at expense of a secondary expansion of B220+ cells. In contrast, Gr-1+ leukemic cells continuously expanded in mice receiving BCR-ABL-transduced WT BM cells. These results suggest that loss of ELF4 causes a profound abrogation in BCR-ABL-induced CML, while allowing progression of B-cell acute lymphocytic leukemia. Since loss of Elf4 led to impaired maintenance of myeloid leukemic cells, we postulated that ELF4 may affect survival of LSCs. Thus, we analyzed the frequency of Lin-c-Kit+Sca-1+ (LSK) cells that are BCR-ABL positive in BM and spleen. We found that BCR-ABL+ LSK cells were significantly reduced in recipients of BCR-ABL-transduced Elf4-/- BM cells. These studies indicate that ELF4 is essential to maintain the LSC pool in CML acting as a molecular switch between myeloid and lymphoid blast crisis.

Disclosures:

No relevant conflicts of interest to declare.

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution