Abstract 283

Certain malignant B-cells rely upon B-cell receptor-mediated survival signals. Spleen tyrosine kinase (Syk) initiates and amplifies the B-cell receptor-mediated signal. We and others have demonstrated that fostamatinib disodium (FosD: a prodrug of R406, a potent and specific inhibitor of Syk) induces apoptosis in lymphoma cell lines and primary tumors. A recent clinical trial has demonstrated significant clinical activity of FosD in relapsed/refractory B-cell non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia, and minimal overlap in toxicities with conventional agents. Given this background, future development in B-cell NHL will include rational combinations of FosD and currently available therapies. Therefore, we conducted in vitro and in vivo studies of rational combinations including FosD, in anticipation of clinical trial development. First, using a human DLBCL cell line of GCB genotype, (OCI-Ly19), we analyzed in vitro the combination of R406 with the following agents: fludarabine, rapamycin, rituximab, bendamustine and bortezomib. Increased cytotoxicity was observed using in vitro culture assays with the addition of fludarabine, rapamycin, or rituximab to R406. Cell viability at 72 hours was 25% with R406 alone, 27% for fludarabine alone, and only 9% for the fludarabine/R406. At 48 hours, cell viability was 49% using R406 alone, 31% using rituximab alone, and 21% for rituximab/R406. At 120 hours using primary lymphoma cells (DLCL27), there were no viable cells treated with the rapamycin/FosD combination, compared with rapamycin alone (7%) or FosD alone (25%) The addition of bortezomib or bendamustine to FosD resulted in only a minimal additive increase in cytotoxicity. Results with all combinations were similar with the OCI-Ly10 human DLBCL line of ABC genotype. We then performed in vivo studies by subcutaneous transplantation of the DLBCL cell line OCI-Ly19, (engineered to express luciferase allowing for real time in vivo imaging) into immune deficient NOD/SCID mice which reproducibly formed tumors. Recipient animals were separated into uniform cohorts when the tumors were less than or equal to 500 mm3 in size. The animals were then simultaneously treated with FosD (n=7; 3 gm/kg ad. lib.; translates into 2-5 micromolar R406 systemically throughout the 24h period) and either bortezomib, (n=6; 0.4 mg/kg weekly IP), or rituximab, (n=13; 3 mg/kg, 2x weekly IP). Analysis of the OCI-Ly19 tumor volumes at day 46 showed a median of 2364 mm3 with bortezomib alone compared with 1823 mm3 with bortezomib and FosD. When FosD was combined with rituximab the most significant cytotoxicity was observed: (p=0.01; median tumor volume of 497 mm3 following the combination) in comparison to either FosD alone (3150 mm3) or rituximab alone (1764 mm3). We conclude that the addition of FosD appears to increase activity against NHL of several drugs, including fludarabine and rapamycin. These agents have significant activity in indolent and mantle cell NHL as well as CLL. Moreover, there is no evidence that FosD impedes rituximab responses in vitro or in vivo; in fact we have suggested possible synergy with the combination of rituximab and FosD. Based upon the documented single agent activity of FosD in humans, and this data, clinical trials are now indicated using these promising combinations in NHL and CLL.

Disclosures:

Pine:Rigel: Employment. Friedberg:Rigel: Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution