Abstract 282

Natural Killer (NK) cells are important mediators of the innate immune system that could be targeted therapeutically to treat hematologic malignancies and to prevent graft-versus-host disease. Hence, a better understanding of NK cell survival and tissue trafficking at steady state is vital to develop cell-based therapies. Genes that control proliferation are often involved in tissue distribution of lymphocytes, such as KLF2 in T cells. KLF4, another member of the Krüppel-like factor family, can activate and repress genes involved in diverse cellular processes. We recently reported that KLF4 is part of a novel inhibitory pathway that prevents proliferation of naïve T cells during homeostasis and retain memory T cells in lymph nodes (Yamada et al., Nature Immunology, 2009). In this work, we studied the role of KLF4 in the development and maintenance of NK cells by deleting Klf4-floxed gene (fl/fl) using the Mx1-Cre system. The percentage of NK1.1+TCR- cells is significantly reduced in peripheral blood of Klf4-deficient (▪/▪) mice (fl/fl: 3.4±1.1 versus ▪/▪: 1.2±0.1, n=9) and also absolute numbers in spleen (▪/▪: 1.1±1.3 ×106, n=6) due to increased percentage of Annexin V positive cells (fl/fl: 9.2±3.2 versus ▪/▪: 22.9±15.5, n=15). The number of CD49d+TCR- cells was also significantly reduced in peripheral blood and spleen of Klf4-deficient mice. In contrast, the number of NK cells in bone marrow and lymph nodes of Klf4-deficient mice was similar to controls. Deletion of Klf4 gene led to reduced numbers of NK1.1+TCR-CD27+CD11b+ and NK1.1+TCR-CD27-CD11b+ cells, which correlated with increasing apoptosis of these subsets. Yet, the percentages of these NK cell subsets were normal in bone marrow ruling out a developmental defect in this tissue. Transplant of wild type and Klf4-deficient bone marrow cells into wild type mice suggested environmental rather than cell intrinsic defects. NK cells (NK1.1+TCR-) isolated from spleen of Klf4-deficient mice showed to be functional in a cytotoxicity assay using a mixture of differentially CFSE-labeled RMA-S (target) and EL4 (control). In summary, KLF4 plays a key role in the maintenance of mature NK cells in peripheral blood and spleen.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution