Panobinostat (LBH589) is a highly potent oral pan-deacetylase (DAC) inhibitor currently undergoing clinical development in hematologic and solid malignancies. Panobinostat demonstrated preliminary clinical efficacy in cutaneous T-cell lymphoma (CTCL) patients in a phase I trial, with 6 responders out of 10 patients. Here we report the characterization of the effects of panobinostat on CTCL cells in vitro and in a murine xenograft model of CTCL. Panobinostat was found to potently induce growth inhibition of all CTCL cell lines tested (HuT78, HuT102, MJ, and HH) and exhibited significant cytotoxic activity against two CTCL cell lines (HuT78 and HH). Panobinostat was found to induce activation of caspases 3 and 7 in HuT78 and HH cell lines, consistent with its effects on cell viability in these cells. To investigate the effect of panobinostat in vivo, an HH CTCL xenograft mouse model was treated with vehicle or different doses of panobinostat by iv administration qd×5 for 2 weeks. Treatment with panobinostat at 10 mg/kg resulted in complete tumor regression relative to vehicle-treated animals. To gain a better understanding of panobinostat activity in CTCL, molecular mechanisms underlying cell sensitivity or lack thereof were investigated. Inhibition of DAC activity as measured by hyperacetylation of histones H3, H4, and tubulin was observed equally in all four cell lines. Interestingly, CTCL cells insensitive to panobinostat cytotoxicity (HuT102 and MJ) were found to express significantly higher levels of IL-2 receptor and to secrete high levels of select cytokines, including IFN-α, IFN-γ, and TNF-α, as compared with CTCL cells sensitive to panobinostat-induced cytotoxicity. Contrary to panobinostat-sensitive CTCL cells, cells insensitive to panobinostat-induced cell death were found to contain constitutively active NF-κB signaling and elevated activation of STAT proteins. Panobinostat-insensitive HuT102 and MJ cell lines were also found to express high levels of the pro-survival protein Bcl-2, an anti-apoptotic target whose transcription can be activated by NF-κB signaling. Although inhibition of STAT5 activation using a JAK inhibitor did not confer panobinostat sensitivity in the HuT102 and MJ CTCL cell lines, combination of a Bcl-2 inhibitor with panobinostat revealed a synergistic effect on cytotoxicity in these CTCL cells. Such results suggest that blocking anti-apoptotic signaling in combination with panobinostat treatment is effective in conferring panobinostat sensitivity to CTCL cells refractory to panobinostat-induced cell death. These data demonstrate that panobinostat exhibits significant anti-cancer effects on CTCL cells both in vitro and in vivo at clinically attainable concentrations. In addition, we have identified a cellular mechanism of insensitivity to panobinostat and furthermore provided a potential approach for sensitizing cells to panobinostat treatment in combination with a Bcl-2 inhibitor. Panobinostat, as a single agent or in combination, is a promising therapy for CTCL and these studies support continued clinical evaluation of panobinostat in the treatment of CTCL.

Author notes

Disclosure: Employment: Employee of Novartis.

Sign in via your Institution