It has been reported that disruption of transcription factors critical for hematopoiesis, such as C/EBPa and AML1, is involved in leukemogenesis. PU.1 is a transcription factor important for both myeloid and lymphoid development. We reported that mice in which the levels of PU.1 were 20% of that of wild-type developed acute myeloid leukemia, T cell lymphoma, and a CLL-like disease. These findings strongly suggest that PU.1 has tumor suppressive activity in multiple hematopoietic lineages. Last year, we reported that PU.1 is downregulated in a majority of multiple myeloma cell lines and and freshly isolated CD138 positive myeloma cells from certain number of myeloma patients, and that tet-off inducible exogenous expression of PU.1 in PU.1 negative myeloma cell lines induced cell growth arrest and apoptosis. Based on their PU.1 expression levels, we divided the myeloma patients into two groups, namely PU.1 high and PU.1 low-to-negative, (cutoff index of 25th percentile of the PU.1 expression level distribution among all patients). The PU.1 low-to-negative patients had a significantly poorer prognosis than the PU.1 high patients. To elucidate the mechanisms of downregulation of PU.1, we performed sequence and epigenetic analysis of the promoter region and the -17 kb upstream region that is conserved among mammalians and important for proper expression of PU.1. There are no mutations in these regions of all five myeloma cell lines. In contrast, the -17 kb upstream region was highly methylated in 3 of 4 PU.1 negative myeloma cell lines, while the promoter region was also methylated to various levels in all five myeloma cell lines including one PU.1 positive cell line. These data suggested that the downregulation of PU.1 in myeloma cell lines might be dependent on the methylation of both regulatory regions of PU.1 gene, especially the -17 kb upstream region. We also evaluated the mechanisms of cell growth arrest and apoptosis of myeloma cell lines induced by PU.1. Among apoptosis-related genes, we identified that TRAIL was upregulated after PU.1 induction. To evaluate the effect of upregulation of TRAIL, we stably introduced siRNA for TRAIL into myeloma cell lines expressing PU.1, and we found that apoptosis of these cells was partially suppressed by siRNA for TRAIL, suggesting that apoptosis of myeloma cells induced by PU.1 might be at least partially due to TRAIL upregulation. We are currently performing DNA microarray analysis to compare the expression levels of genes between before and after PU.1 induction, in order to further elucidate the mechanisms of cell growth arrest and apoptosis.

Disclosure: No relevant conflicts of interest to declare.

Author notes

*

Corresponding author

Sign in via your Institution