The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph1)-positive leukemia cells. We find that BCR/ABL kinase - induced reactive oxygen species (ROS) cause chronic oxidative DNA damage as indicated by an enzymatic assay detecting oxidized bases. These DNA lesions result in DNA double-strand breaks (DSBs) detected by comet assay, immunofluorescent gamma-H2AX nuclear foci and linker-ligation PCR (LL-PCR). Combined analysis of the length of LL-PCR products and the sequences of two reference genes DR-GFP and Na+/K+ ATPase revealed that ROS dependent DSBs occurred in the regions containing multiple, 5–9bp long stretches of G/C, in concordance with the notion that oxidative DNA damage is predominantly detected in G/C-rich sequences. Elevated numbers of DSBs were detected in BCR/ABL cell lines, murine bone marrow cells transformed with BCR/ABL and in CML patient samples, in comparison to normal counterparts. Inhibition of the BCR/ABL kinase by STI571 and diminishion of ROS activity by the ROS scavenger PDTC reduced DSBs formation. Cell cycle analysis revealed that most of these DSBs occur during S and G2/M phases, and are probably associated with the stalled replication forks. Homologous recombination repair (HRR) and non-homologous end-joining (NHEJ) represent two major mechanisms of DSBs repair in S and G2/M cell cycle phase. Using the in vivo recombination assay consisting of the DSB-dependent reconstitution of the green fluorescent protein (GFP) gene we found that HRR is stimulated in BCR/ABL-positive cells. In addition, in vitro assay measuring the activity of NHEJ revealed that this repair process is also activated by the BCR/ABL kinase. RAD51 and Ku70 play a key role in HRR and NHEJ, respectively. The reaction sites of HRR and NHEJ in the nuclei could be visualized by double-immunofluorescence detecting co-localization of gamma-H2AX foci (DSBs sites) with RAD51 (HRR sites) or Ku70 (NHEJ sites). Equal co-localization frequency of gamma-H2AX foci with RAD51 and Ku70 was detected, suggesting that both HRR and NHEJ play an important role in reparation of ROS-dependent DSBs in BCR/ABL-transformed cells. Analysis of the DSBs repair products in the reporter DR-GFP gene in BCR/ABL cells identified ~40% of HRR and ~60% of NHEJ events. Sequencing revealed point-mutations in HRR products and large deletions in NHEJ products in BCR/ABL-positive cells, but not in non-transformed cells. We propose that the following series of events may contribute to genomic instability of Ph1-positive leukemias: BCR/ABL → ROS → oxidative DNA damage → DSBs in proliferating cells → unfaithful HRR and NHEJ repair. Since BCR/ABL share many similarities with other members of the fusion tyrosine kinases (FTKs) family, these events may contribute to genomic instability of hematological malignancies caused by FTKs.

Author notes

Corresponding author

Sign in via your Institution