Seven purified peripheral blood memory B-cells (BM), seven in-vitro-generated polyclonal plasmablastic cells (PPC) and seven purified bone marrow mature plasma cells (BMPC) were studied by oligonucleotide microarrays. All samples were obtained from healthy volunteers. The gene expression profiling of these samples was determined with Affymetrix pan genomic U133A + B arrays (44 928 oligonucleotide probesets). We determined that 2313 genes were differentially expressed between these three B cell categories (P 〈 0.01 by a Kruskal-Wallis test and a ratio between two categories 〉 3).

These 2313 genes were classified into six categories, according to the expression profile: early plasma cell genes (EPC), late plasma cell genes (LPC), genes lost early during plasma cell differentiation (LEPC), genes lost late during plasma cell differentiation (LLPC), genes upregulated only in plasmablasts (PBO) and genes lost only in plasmablasts (LPBO). As expected, Ig transcripts where essentially classified as EPC. As a corollary, genes involved in protein synthesis or degradation, transmembrane transporters and metabolism genes were overrepresented in EPC genes. Interestingly, genes involved in intercellular communication and extracellular matrix were enriched in LPC, highlighting the fact that mature plasma cells develop tight interactions with the bone marrow environment. Of note, genes involved in cell cycle are upregulated mainly in plasmablasts, whereas antiapoptotic genes are lost in plasmablasts only.

Mains genes known to be involved in plasma cell differentiation display an expression profile in agreement with published data, as illustrated for transcription factors in Figure 1, validating this DNA microarray dataset. However most of these 2313 genes have either never been described yet or have no yet been linked to plasma cell differentiation. The description of those genes among our genome whose expression vary most during plasma cell differentiation will be an essential step in understanding the biology of a cell type essential to immune defenses and involved in deadly diseases.

Figure 1:

Transcription factors involved in plasma cell differentiation. Color indicates the expression profile category. For each gene is given the ratio of the mean expression value in plasma cell samples (PPC and BMPC) to the mean expression value in BM. UPR: Unfolded Protein Response.

Figure 1:

Transcription factors involved in plasma cell differentiation. Color indicates the expression profile category. For each gene is given the ratio of the mean expression value in plasma cell samples (PPC and BMPC) to the mean expression value in BM. UPR: Unfolded Protein Response.

Close modal

Author notes

Corresponding author

Sign in via your Institution