Abstract
Despite recent advances in the treatment of multiple myeloma (MM), this disease remains incurable. Accumulating evidence suggest that the bone marrow (BM) microenvironment of MM plays a critical role in tumor growth, survival, and drug resistance. A key aspect of this tumor-supportive environment is elevated levels of cytokines and other soluble factors. Most prominent among these is IL-6, which acts as a survival factor for MM cells and promotes their proliferation, migration, and drug resistance. Other mediators also implicated in the disease are VEGF and TNFa. The p38 MAPK is activated by a multitude of signals, including pro-inflammatory cytokines (e.g., TNFa and IL-1ß) and environmental stress. Furthermore, p38 activation has been shown to be important for the synthesis and secretion of IL-6, VEGF, and TNFa. Consequently, inhibition of p38 is postulated to reduce the production of these factors implicated in MM and to have therapeutic benefit by suppressing the tumor-supportive state of the BM microenvironment. Here, we demonstrate that SCIO-469, a specific and potent inhibitor of p38a MAPK, strongly inhibits MM cell proliferation by affecting MM cells directly as well as the BM microenvironment. SCIO-469 directly inhibits MM cell proliferation in long term culture. Importantly, SCIO-469 potently inhibits IL-6 and VEGF secretion from BM stromal cells (BMSC). To examine the effect of inhibiting BMSC-derived factors important in MM, we measured MM cell proliferation using transwell plates that separate BMSC from MM cells via a porous membrane. In transwell plates containing only MM cells, MM cell proliferation was modest and was inhibited by SCIO-469. In contrast, the presence of BMSC in transwell inserts dramatically increased the proliferation of MM cells over the course of the study. This result suggests that factors (e.g., IL-6) secreted by BMSC greatly stimulate MM cell proliferation. When SCIO-469 was added to these transwell cultures containing BMSC, MM cell proliferation was inhibited significantly. Consistent with these results, we show that levels of IL-6 under these conditions mirror exactly the proliferation of MM cells; IL-6 level is high in vehicle-treated cultures and is suppressed in SCIO-469-treated cultures. Finally, in a mouse xenograft plasmacytoma model of MM, we show that p38 inhibition significantly inhibited the increase in MM tumor volume. Collectively, our data indicate that SCIO-469 is a suppressor of the BM microenvironment and an effective inhibitor of MM cell proliferation in vitro and in vivo. Since SCIO-469 also inhibits secretion of osteoclast-stimulating factors (RANKL, IL-11, and MIP1a) in the microenvironment, SCIO-469 may not only inhibit MM cell survival but may also alleviate bone-related pathologies (bone destruction and osteolytic lesions) commonly associated with MM. Therefore, SCIO-469 may offer great promise for an improved outcome for patients with MM.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal