• PU.1 haploinsufficiency causes agammaglobulinemia and dendritic-cell deficiencies with incomplete penetrance and variable expressivity.

  • Patients with PU.1-mutated agammaglobulinemia experience a broad array of infectious and noninfectious complications, but not leukemia.

Abstract

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.1 loss either induces acute myeloid leukemia or arrests early B-cell and dendritic-cell development. Although humans with absolute PU.1 deficiency have not been reported, a small cadre of congenital agammaglobulinemia patients with sporadic, inborn PU.1 haploinsufficiency was recently described. To better estimate the penetrance, clinical complications, immunophenotypic features, and malignancy risks of PU.1-mutated agammaglobulinemia (PU.MA), a collection of 134 novel or rare PU.1 variants from publicly available databases, institutional cohorts, previously published reports, and unsolved agammaglobulinemia cases were functionally analyzed. In total, 25 loss-of-function (LOF) variants were identified in 33 heterozygous carriers from 21 kindreds across 13 nations. Of individuals harboring LOF PU.1 variants, 22 were agammaglobulinemic, 5 displayed antibody deficiencies, and 6 were unaffected, indicating an estimated disease penetrance of 81.8% with variable expressivity. In a cluster of patients, disease onset was delayed, sometimes into adulthood. All LOF variants conveyed effects via haploinsufficiency, either by destabilizing PU.1, impeding nuclear localization, or directly interfering with transcription. PU.MA patient immunophenotypes consistently demonstrated B-cell, conventional dendritic-cell, and plasmacytoid dendritic-cell deficiencies. Associated infectious and noninfectious symptoms hewed closely to X-linked agammaglobulinemia and not monogenic dendritic-cell deficiencies. No carriers of LOF PU.1 variants experienced hematologic malignancies. Collectively, in vitro and clinical data indicate heterozygous LOF PU.1 variants undermine humoral immunity but do not convey strong leukemic risks.

1.
DeKoter
RP
,
Singh
H
.
Regulation of B lymphocyte and macrophage development by graded expression of PU.1
.
Science
.
2000
;
288
(
5470
):
1439
-
1441
.
2.
Scott
EW
,
Simon
MC
,
Anastasi
J
,
Singh
H
.
Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages
.
Science
.
1994
;
265
(
5178
):
1573
-
1577
.
3.
McKercher
SR
,
Torbett
BE
,
Anderson
KL
, et al
.
Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities
.
EMBO J
.
1996
;
15
(
20
):
5647
-
5658
.
4.
Iwasaki
H
,
Somoza
C
,
Shigematsu
H
, et al
.
Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation
.
Blood
.
2005
;
106
(
5
):
1590
-
1600
.
5.
Nguyen
K
,
Alsaati
N
,
Le Coz
C
,
Romberg
N
.
Genetic obstacles to developing and tolerizing human B cells
.
WIREs Mech Dis
.
2022
;
14
(
4
):
e1554
.
6.
DeKoter
RP
,
Kamath
MB
,
Houston
IB
.
Analysis of concentration-dependent functions of PU.1 in hematopoiesis using mouse models
.
Blood Cells Mol Dis
.
2007
;
39
(
3
):
316
-
320
.
7.
Will
B
,
Vogler
TO
,
Narayanagari
S
, et al
.
Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia
.
Nat Med
.
2015
;
21
(
10
):
1172
-
1181
.
8.
Steidl
U
,
Rosenbauer
F
,
Verhaak
RGW
, et al
.
Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells
.
Nat Genet
.
2006
;
38
(
11
):
1269
-
1277
.
9.
Rosenbauer
F
,
Wagner
K
,
Kutok
JL
, et al
.
Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1
.
Nat Genet
.
2004
;
36
(
6
):
624
-
630
.
10.
Houston
IB
,
Kamath
MB
,
Schweitzer
BL
,
Chlon
TM
,
DeKoter
RP
.
Reduction in PU.1 activity results in a block to B-cell development, abnormal myeloid proliferation, and neonatal lethality
.
Exp Hematol
.
2007
;
35
(
7
):
1056
-
1068
.
11.
Carotta
S
,
Dakic
A
,
D’Amico
A
, et al
.
The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner
.
Immunity
.
2010
;
32
(
5
):
628
-
641
.
12.
Chopin
M
,
Lun
AT
,
Zhan
Y
, et al
.
Transcription factor PU.1 promotes conventional dendritic cell identity and function via induction of transcriptional regulator DC-SCRIPT
.
Immunity
.
2019
;
50
(
1
):
77
-
90.e5
.
13.
Lek
M
,
Karczewski
KJ
,
Minikel
EV
, et al
.
Analysis of protein-coding genetic variation in 60,706 humans
.
Nature
.
2016
;
536
(
7616
):
285
-
291
.
14.
Fuller
ZL
,
Berg
JJ
,
Mostafavi
H
,
Sella
G
,
Przeworski
M
.
Measuring intolerance to mutation in human genetics
.
Nat Genet
.
2019
;
51
(
5
):
772
-
776
.
15.
Samocha
KE
,
Kosmicki
JA
,
Karczewski
KJ
, et al
.
Regional missense constraint improves variant deleteriousness prediction
.
bioRxiv
.
Preprint posted online 12 June 2017
.
16.
Le Coz
C
,
Nguyen
DN
,
Su
C
, et al
.
Constrained chromatin accessibility in PU.1-mutated agammaglobulinemia patients
.
J Exp Med
.
2021
;
218
(
7
):
e20201750
.
17.
Mueller
BU
,
Pabst
T
,
Osato
M
, et al
.
Heterozygous PU.1 mutations are associated with acute myeloid leukemia
.
Blood
.
2002
;
100
(
3
):
998
-
1007
.
18.
Miskovic
R
,
Ljubicic
J
,
Bonaci-Nikolic
B
, et al
.
Case report: rapidly progressive neurocognitive disorder with a fatal outcome in a patient with PU.1 mutated agammaglobulinemia
.
Front Immunol
.
2024
;
15
:
1324679
.
19.
Van Spronsen
DJ
,
Kerbert-Dreteler
M
,
van der Sluijs Veer
G
,
ten Napel
CH
.
Common variable immunodeficiency in a family
.
Neth J Med
.
1992
;
40
(
1-2
):
15
-
22
.
20.
Verma
A
,
Damrauer
SM
,
Naseer
N
, et al
.
The Penn Medicine BioBank: towards a genomics-rnabled learning healthcare system to accelerate precision medicine in a diverse population
.
J Personalized Med
.
2022
;
12
(
12
):
1974
-
1990
.
21.
Bousfiha
A
,
Moundir
A
,
Tangye
SG
, et al
.
The 2022 Update of IUIS phenotypical classification for human inborn errors of immunity
.
J Clin Immunol
.
2022
;
42
(
7
):
1508
-
1520
.
22.
Kircher
M
,
Witten
DM
,
Jain
P
,
O'Roak
BJ
,
Cooper
GM
,
Shendure
J
.
A general framework for estimating the relative pathogenicity of human genetic variants
.
Nat Genet
.
2014
;
46
(
3
):
310
-
315
.
23.
Schubach
M
,
Maass
T
,
Nazaretyan
L
,
Röner
S
,
Kircher
M
.
CADD v1.7: using protein language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions
.
Nucleic Acids Res
.
2024
;
52
(
D1
):
D1143
-
D1154
.
24.
Tordai
H
,
Torres
O
,
Csepi
M
,
Padányi
R
,
Lukács
GL
,
Hegedűs
T
.
Analysis of AlphaMissense data in different protein groups and structural context
.
Sci Data
.
2024
;
11
(
1
):
495
-
504
.
25.
Klemsz
MJ
,
McKercher
SR
,
Celada
A
,
Van Beveren
C
,
Maki
RA
.
The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene
.
Cell
.
1990
;
61
(
1
):
113
-
124
.
26.
Terrell
JR
,
Taylor
SJ
,
Schneider
AL
, et al
.
DNA selection by the master transcription factor PU.1
.
Cell Rep
.
2023
;
42
(
7
):
112671
.
27.
Kwok
JC
,
Perdomo
J
,
Chong
BH
.
Identification of a monopartite sequence in PU.1 essential for nuclear import, DNA-binding and transcription of myeloid-specific genes
.
J Cell Biochem
.
2007
;
101
(
6
):
1456
-
1474
.
28.
Zhong
H
,
Takeda
A
,
Nazari
R
,
Shio
H
,
Blobel
G
,
Yaseen
NR
.
Carrier-independent nuclear import of the transcription factor PU.1 via RanGTP-stimulated binding to Nup153
.
J Biol Chem
.
2005
;
280
(
11
):
10675
-
10682
.
29.
Hernandez-Trujillo
V
,
Zhou
C
,
Scalchunes
C
, et al
.
A registry study of 240 patients with X-linked agammaglobulinemia living in the USA
.
J Clin Immunol
.
2023
;
43
(
6
):
1468
-
1477
.
30.
Kodandapani
R
,
Pio
F
,
Ni
C-Z
, et al
.
A new pattern for helix–turn–helix recognition revealed by the PU.l ETS–domain–DNA complex
.
Nature
.
1996
;
380
(
6573
):
456
-
460
.
31.
Begg
CB
.
On the use of familial aggregation in population-based case probands for calculating penetrance
.
J Natl Cancer Inst
.
2002
;
94
(
16
):
1221
-
1226
.
32.
Fieschi
C
,
Dupuis
S
,
Catherinot
E
, et al
.
Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor β1 deficiency
.
J Exp Med
.
2003
;
197
(
4
):
527
-
535
.
33.
Shahin
T
,
Mayr
D
,
Shoeb
MR
, et al
.
Identification of germline monoallelic mutations in IKZF2 in patients with immune dysregulation
.
Blood Adv
.
2022
;
6
(
7
):
2444
-
2451
.
34.
Kuehn
HS
,
Boisson
B
,
Cunningham-Rundles
C
, et al
.
Loss of B cells in patients with heterozygous mutations in IKAROS
.
N Engl J Med
.
2016
;
374
(
11
):
1032
-
1043
.
35.
Hsu
AP
,
Sampaio
EP
,
Khan
J
, et al
.
Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome
.
Blood
.
2011
;
118
(
10
):
2653
-
2655
.
36.
Hambleton
S
,
Salem
S
,
Bustamante
J
, et al
.
IRF8 mutations and human dendritic-cell immunodeficiency
.
N Engl J Med
.
2011
;
365
(
2
):
127
-
138
.
37.
Kong
X-F
,
Martinez-Barricarte
R
,
Kennedy
J
, et al
.
Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency
.
Nat Immunol
.
2018
;
19
(
9
):
973
-
985
.
38.
Momenilandi
M
,
Lévy
R
,
Sobrino
S
, et al
.
FLT3L governs the development of partially overlapping hematopoietic lineages in humans and mice
.
Cell
.
2024
;
187
(
11
):
2817
-
2837.e31
.
39.
Ciancanelli
MJ
,
Huang
SXL
,
Luthra
P
, et al
.
Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency
.
Science
.
2015
;
348
(
6233
):
448
-
453
.
40.
Zhang
Q
,
Bastard
P
,
Liu
Z
, et al
.
Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
.
Science
.
2020
;
370
(
6515
):
eabd4570
.
41.
Honda
K
,
Yanai
H
,
Negishi
H
, et al
.
IRF-7 is the master regulator of type-I interferon-dependent immune responses
.
Nature
.
2005
;
434
(
7034
):
772
-
777
.
42.
O’Toole
D
,
Groth
D
,
Wright
H
, et al
.
X-linked agammaglobulinemia: infection frequency and infection-related mortality in the USIDNET registry
.
J Clin Immunol
.
2022
;
42
(
4
):
827
-
836
.
43.
Smith
AM
,
Gibbons
HM
,
Oldfield
RL
, et al
.
The transcription factor PU.1 is critical for viability and function of human brain microglia
.
Glia
.
2013
;
61
(
6
):
929
-
942
.
44.
Cakir
B
,
Tanaka
Y
,
Kiral
FR
, et al
.
Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids
.
Nat Commun
.
2022
;
13
(
1
):
430
-
445
.
45.
Krämer
J
,
Bar-Or
A
,
Turner
TJ
,
Wiendl
H
.
Bruton tyrosine kinase inhibitors for multiple sclerosis
.
Nat Rev Neurol
.
2023
;
19
(
5
):
289
-
304
.
46.
Roos-Weil
D
,
Decaudin
C
,
Armand
M
, et al
.
A recurrent activating missense mutation in Waldenström macroglobulinemia affects the DNA binding of the ETS transcription factor SPI1 and enhances proliferation
.
Cancer Discov
.
2019
;
9
(
6
):
796
-
811
.
47.
Nagata
Y
,
Narumi
S
,
Guan
Y
, et al
.
Germline loss-of-function SAMD9 and SAMD9L alterations in adult myelodysplastic syndromes
.
Blood
.
2018
;
132
(
21
):
2309
-
2313
.
48.
Narumi
S
,
Amano
N
,
Ishii
T
, et al
.
SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7
.
Nat Genet
.
2016
;
48
(
7
):
792
-
797
.
49.
Nagamachi
A
,
Matsui
H
,
Asou
H
, et al
.
Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7
.
Cancer Cell
.
2013
;
24
(
3
):
305
-
317
.
50.
Cheong
A
,
Nagel
ZD
.
Human variation in DNA repair, immune function, and cancer risk
.
Front Immunol
.
2022
;
13
:
899574
.
51.
Sun
D
,
Heimall
JR
,
Greenhawt
MJ
,
Bunin
NJ
,
Shaker
MS
,
Romberg
N
.
Cost utility of lifelong immunoglobulin replacement therapy vs hematopoietic stem cell transplant to treat agammaglobulinemia
.
JAMA Pediatr
.
2022
;
176
(
2
):
176
-
184
.
52.
Gomez Perdiguero
E
,
Klapproth
K
,
Schulz
C
, et al
.
Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
.
Nature
.
2015
;
518
(
7540
):
547
-
551
.
You do not currently have access to this content.
Sign in via your Institution