In the bone marrow hematopoietic stem cells (HSCs) reside in specialized niches in close contact with stromal cells and endosteal osteoblasts. It is thought that this environment is hypoxic in nature, where HSCs are maintained in a quiescent state to prevent their depletion. Hypoxia stabilizes the transcription factor HIF-1α which triggers angiogenesis as well as genes slowering the cell cycle, promoting cell survival, and leading to a decrease in cellular metabolism. In this study, hypoxic effects of the maintenance of LinSca1+c-kit+* (LSK) cells derived from mouse bone marrow and the involvement of the transcription factor hypoxia inducible factor 1 α (HIF-1α) were investigated. Hypoxic culture conditions led to an increase in numbers of primitive colony-forming progenitor cells and a preferential expansion of immature blast-like appearing cells. Concurrently, the immature c-kit Sca-1 phenotype was better maintained in hypoxia compared to ambient oxygen levels. Moreover, hypoxia decreased the proliferation of HSCs as measured by CFSE or PKH26 staining. This was confirmed by cell cycle analysis, and hypoxic cultivation decreased the percentage of cells in S-phase whereas cells in G0/G1 phase increased. Cells infected with a constitutively active form of HIF-1α showed the same pattern as cells cultured in hypoxia. To verify that the effect is HIF-1α mediated, we silenced HIF-1α in LSK cells with shRNA. The decrease in proliferation in hypoxic cultivation of cells infected with shRNA against HIF-1α was markedly diminished, indicating that HIF-1α play an important role in controlling proliferation of hematopoietic stem cells. These results suggest that a major function of hypoxia is to counteract proliferation and possibly differentiation, thereby sustaining maintenance. Furthermore, hypoxic culture conditions may have beneficial clinical implications for ex vivo purposes and may improve the yields of stem cells. In our ongoing-studies, we are investigating whether HIF-1α and hypoxia is an absolute prerequisite for the proper maintenance of HSCs in the bone marrow.

Disclosures: No relevant conflicts of interest to declare.

Author notes

Corresponding author

Sign in via your Institution