• Treatment-naive, newly diagnosed patients with DLBCL exhibited gut microbial dysbiosis.

  • The abundance of Enterobacteriaceae correlated with treatment outcome and febrile neutropenia after RCHOP chemotherapy.

The gut microbiome influences cancer development and the efficacy and safety of chemotherapy but little is known about its effects on lymphoma. We obtained stool samples from treatment-naive, newly diagnosed patients with diffuse large B-cell lymphoma (DLBCL) (n = 189). We first performed 16S ribosomal RNA gene sequencing (n = 158) and then conducted whole-genome shotgun sequencing on additional samples (n = 106). We compared the microbiome data from these patients with data from healthy controls and assessed whether microbiome characteristics were associated with treatment outcomes. The alpha diversity was significantly lower in patients with DLBCL than in healthy controls (P < .001), and the microbial composition differed significantly between the groups (P < .001). The abundance of the Enterobacteriaceae family belonging to the Proteobacteria phylum was markedly higher in patients than in healthy controls. Functional analysis of the microbiome revealed an association with opportunistic pathogenesis through type 1 pili, biofilm formation, and antibiotics resistance. Enterobacteriaceae members were significantly enriched in patients who experienced febrile neutropenia and in those who experienced relapse or progression (P < .001). Interestingly, greater abundance of Enterobacteriaceae correlated with shorter progression-free survival (P = .007). The cytokine profiles of patients whose microbiome was enriched with Enterobacteriaceae were significantly associated with interleukin 6 (P = .035) and interferon gamma (P = .045) levels. In summary, patients with DLBCL exhibited gut microbial dysbiosis. The abundance of Enterobacteriaceae correlated with treatment outcomes and febrile neutropenia. Further study is required to elucidate the origin and role of gut dysbiosis in DLBCL.

1.
Geva-Zatorsky
N
,
Sefik
E
,
Kua
L
, et al
.
Mining the human gut microbiota for immunomodulatory organisms
.
Cell
.
2017
;
168
(
5
):
928
-
943.e11
.
2.
Honda
K
,
Littman
DR
.
The microbiota in adaptive immune homeostasis and disease
.
Nature
.
2016
;
535
(
7610
):
75
-
84
.
3.
Gopalakrishnan
V
,
Helmink
BA
,
Spencer
CN
,
Reuben
A
,
Wargo
JA
.
The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy
.
Cancer Cell
.
2018
;
33
(
4
):
570
-
580
.
4.
Elalaoui
K
,
Weihe
C
,
Oliver
A
, et al
.
Investigating the role of the gut microbiome in the inflammatory state of myeloproliferative neoplasms [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
3051
.
5.
Viaud
S
,
Saccheri
F
,
Mignot
G
, et al
.
The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide
.
Science
.
2013
;
342
(
6161
):
971
-
976
.
6.
Iida
N
,
Dzutsev
A
,
Stewart
CA
, et al
.
Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
.
Science
.
2013
;
342
(
6161
):
967
-
970
.
7.
Sivan
A
,
Corrales
L
,
Hubert
N
, et al
.
Commensal bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy
.
Science
.
2015
;
350
(
6264
):
1084
-
1089
.
8.
Lee
SH
,
Cho
SY
,
Yoon
Y
, et al
.
Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice
.
Nat Microbiol
.
2021
;
6
(
3
):
277
-
288
.
9.
Susanibar-Adaniya
S
,
Barta
SK
.
2021 Update on diffuse large B cell lymphoma: a review of current data and potential applications on risk stratification and management
.
Am J Hematol
.
2021
;
96
(
5
):
617
-
629
.
10.
Lang
R
,
Gill
MJ
.
Diffuse large B-cell lymphoma
.
N Engl J Med
.
2021
;
384
(
23
):
2261
-
2262
.
11.
Yuan
L
,
Wang
W
,
Zhang
W
, et al
.
Gut microbiota in untreated diffuse large B cell lymphoma patients
.
Front Microbiol
.
2021
;
12
:
646361
.
12.
Sehn
LH
,
Salles
G
.
Diffuse large B-cell lymphoma
.
N Engl J Med
.
2021
;
384
(
9
):
842
-
858
.
13.
Pettengell
R
,
Johnsen
HE
,
Lugtenburg
PJ
, et al
.
Impact of febrile neutropenia on R-CHOP chemotherapy delivery and hospitalizations among patients with diffuse large B-cell lymphoma
.
Support Care Cancer
.
2012
;
20
(
3
):
647
-
652
.
14.
Kim
SJ
,
Hong
JS
,
Chang
MH
, et al
.
Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large B-cell lymphoma: results of a multicenter prospective cohort study
.
Oncotarget
.
2016
;
7
(
44
):
72033
-
72043
.
15.
Coiffier
B
,
Lepage
E
,
Briere
J
, et al
.
CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma
.
N Engl J Med
.
2002
;
346
(
4
):
235
-
242
.
16.
Crawford
J
,
Becker
PS
,
Armitage
JO
, et al
.
Myeloid growth factors, version 2.2017, NCCN clinical practice guidelines in oncology
.
J Natl Compr Canc Netw
.
2017
;
15
(
12
):
1520
-
1541
.
17.
Diefenbach
CS
,
Peters
BA
,
Li
H
, et al
.
Microbial dysbiosis is associated with aggressive histology and adverse clinical outcome in B-cell non-Hodgkin lymphoma
.
Blood Adv
.
2021
;
5
(
5
):
1194
-
1198
.
18.
Zhou
Z
,
Sehn
LH
,
Rademaker
AW
, et al
.
An enhanced international prognostic index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era
.
Blood
.
2014
;
123
(
6
):
837
-
842
.
19.
Schmitz
N
,
Zeynalova
S
,
Nickelsen
M
, et al
.
CNS international prognostic index: a risk model for CNS relapse in patients with diffuse large B-cell lymphoma treated with R-CHOP
.
J Clin Oncol
.
2016
;
34
(
26
):
3150
-
3156
.
20.
Cheson
BD
,
Fisher
RI
,
Barrington
SF
, et al
.
Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification
.
J Clin Oncol
.
2014
;
32
(
27
):
3059
-
3068
.
21.
Wood
DE
,
Lu
J
,
Langmead
B
.
Improved metagenomic analysis with Kraken 2
.
Genome Biol
.
2019
;
20
(
1
):
257
.
22.
Yoon
SH
,
Ha
SM
,
Kwon
S
, et al
.
Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies
.
Int J Syst Evol Microbiol
.
2017
;
67
(
5
):
1613
-
1617
.
23.
Na
SI
,
Kim
YO
,
Yoon
SH
,
Ha
SM
,
Baek
I
,
Chun
J
.
UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction
.
J Microbiol
.
2018
;
56
(
4
):
280
-
285
.
24.
Chalita
M
,
Ha
SM
,
Kim
YO
,
Oh
HS
,
Yoon
SH
,
Chun
J
.
Improved metagenomic taxonomic profiling using a curated core gene-based bacterial database reveals unrecognized species in the genus Streptococcus
.
Pathogens
.
2020
;
9
(
3
):
204
.
25.
Langmead
B
,
Salzberg
SL
.
Fast gapped-read alignment with Bowtie 2
.
Nat Methods
.
2012
;
9
(
4
):
357
-
359
.
26.
Li
M
,
Wang
IX
,
Li
Y
, et al
.
Widespread RNA and DNA sequence differences in the human transcriptome
.
Science
.
2011
;
333
(
6038
):
53
-
58
.
27.
Quinlan
AR
,
Hall
IM
.
BEDTools: a flexible suite of utilities for comparing genomic features
.
Bioinformatics
.
2010
;
26
(
6
):
841
-
842
.
28.
Kanehisa
M
,
Furumichi
M
,
Tanabe
M
,
Sato
Y
,
Morishima
K
.
KEGG: new perspectives on genomes, pathways, diseases and drugs
.
Nucleic Acids Res
.
2017
;
45
(
D1
):
D353
-
D361
.
29.
Buchfink
B
,
Xie
C
,
Huson
DH
.
Fast and sensitive protein alignment using DIAMOND
.
Nat Methods
.
2015
;
12
(
1
):
59
-
60
.
30.
Ye
Y
,
Doak
TG
.
A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes
.
PLoS Comput Biol
.
2009
;
5
(
8
):
e1000465
.
31.
Pedregosa
F
,
Varoquaux
G
,
Gramfort
A
, et al
.
Scikit-learn: machine learning in Python
.
J Mach Learn Res
.
2011
;
12
:
2825
-
2830
.
32.
Bolyen
E
,
Rideout
JR
,
Dillon
MR
, et al
.
Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
.
Nat Biotechnol
.
2019
;
37
(
8
):
852
-
857
.
33.
Segata
N
,
Izard
J
,
Waldron
L
, et al
.
Metagenomic biomarker discovery and explanation
.
Genome Biol
.
2011
;
12
(
6
):
R60
.
34.
Shaffer
M
,
Thurimella
K
,
Sterrett
JD
,
Lozupone
CA
.
SCNIC: sparse correlation network investigation for compositional data
.
Mol Ecol Resour
.
2023
;
23
(
1
):
312
-
325
.
35.
Kohl
M
,
Wiese
S
,
Warscheid
B
. Cytoscape: software for visualization and analysis of biological networks. . In:
Hamacher
M
,
Eisenacher
M
,
Stephan
C
, eds.
Data Mining in Proteomics
.
Humana Press
;
2011
:
291
-
303
.
36.
Olszak
T
,
An
D
,
Zeissig
S
, et al
.
Microbial exposure during early life has persistent effects on natural killer T cell function
.
Science
.
2012
;
336
(
6080
):
489
-
493
.
37.
Arpaia
N
,
Campbell
C
,
Fan
X
, et al
.
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
.
Nature
.
2013
;
504
(
7480
):
451
-
455
.
38.
Arthur
JC
,
Perez-Chanona
E
,
Muhlbauer
M
, et al
.
Intestinal inflammation targets cancer-inducing activity of the microbiota
.
Science
.
2012
;
338
(
6103
):
120
-
123
.
39.
Gopalakrishnan
V
,
Spencer
CN
,
Nezi
L
, et al
.
Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients
.
Science
.
2018
;
359
(
6371
):
97
-
103
.
40.
Vetizou
M
,
Pitt
JM
,
Daillere
R
, et al
.
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
.
Science
.
2015
;
350
(
6264
):
1079
-
1084
.
41.
Khan
N
,
Lindner
S
,
Gomes
ALC
, et al
.
Fecal microbiota diversity disruption and clinical outcomes after auto-HCT: a multicenter observational study
.
Blood
.
2021
;
137
(
11
):
1527
-
1537
.
42.
Smith
M
,
Dai
A
,
Ghilardi
G
, et al
.
Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy
.
Nat Med
.
2022
;
28
(
4
):
713
-
723
.
43.
Guarana
M
,
Nucci
M
,
Nouer
SA
.
Shock and early death in hematologic patients with febrile neutropenia
.
Antimicrob Agents Chemother
.
2019
;
63
(
11
). e01250-19.
44.
Puerta-Alcalde
P
,
Cardozo
C
,
Suarez-Lledo
M
, et al
.
Current time-to-positivity of blood cultures in febrile neutropenia: a tool to be used in stewardship de-escalation strategies
.
Clin Microbiol Infect
.
2019
;
25
(
4
):
447
-
453
.
45.
Spaulding
CN
,
Schreiber
HLt
,
Zheng
W
, et al
.
Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions
.
Elife
.
2018
;
7
:
e31662
.
46.
Guo
WY
,
Zhang
H
,
Cheng
M
, et al
.
Molecular epidemiology of plasmid-mediated types 1 and 3 fimbriae associated with biofilm formation in multidrug resistant Escherichia coli from diseased food animals in Guangdong, China
.
Microbiol Spectr
.
2022
;
10
(
5
):
e0250321
.
47.
Gaboriau-Routhiau
V
,
Rakotobe
S
,
Lécuyer
E
, et al
.
The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
.
Immunity
.
2009
;
31
(
4
):
677
-
689
.
48.
Yamamoto
ML
,
Schiestl
RH
.
Intestinal microbiome and lymphoma development
.
Cancer J
.
2014
;
20
(
3
):
190
-
194
.
49.
Fattizzo
B
,
Cavallaro
F
,
Folino
F
,
Barcellini
W
.
Recent insights into the role of the microbiome in malignant and benign hematologic diseases
.
Crit Rev Oncol Hematol
.
2021
;
160
:
103289
.
50.
Wu
Y
,
Lu
C
,
Pan
N
, et al
.
Serum lactate dehydrogenase activities as systems biomarkers for 48 types of human diseases
.
Sci Rep
.
2021
;
11
(
1
):
12997
.
51.
Coiffier
B
,
Sarkozy
C
.
Diffuse large B-cell lymphoma: R-CHOP failure-what to do?
.
Hematology Am Soc Hematol Educ Program
.
2016
;
2016
(
1
):
366
-
378
.
52.
Howlader
N
,
Mariotto
AB
,
Besson
C
, et al
.
Cancer-specific mortality, cure fraction, and noncancer causes of death among diffuse large B-cell lymphoma patients in the immunochemotherapy era
.
Cancer
.
2017
;
123
(
17
):
3326
-
3334
.
You do not currently have access to this content.
Sign in via your Institution