• Single-cell multiome analysis identifies 2 subtypes of WM with variable differentiation capacity, and SPI1, SPIB, and XBP1 activity.

  • The MBC-like subtype has increased CXCR4 mutations, B-cell receptor, and PI3K/AKT/mTOR signaling, and the PC-like subtype has increased del(6q) and NF-κB signaling.

Abstract

We carried out a single-cell multiomic analysis on a series of MYD88-mutated Waldenström macroglobulinemia (WM) patients and identified 2 distinct subtypes of disease, memory B-cell (MBC)–like and plasma cell (PC)–like, based on their expression of key lineage defining genes. Biologically, the subtypes are characterized by their variable capacity to differentiate fully toward a PC and exhibit unique transcriptomic, chromatin accessibility, and genomic profiles. The MBC-like subtype is unable to differentiate beyond the MBC stage, upregulates key MBC genes, and is characterized by upregulated B-cell receptor and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling. In contrast, the PC-like subtype can partially differentiate toward a PC, upregulates key PC genes, has enhanced NF-κB signaling, and has an upregulated unfolded protein response. Pseudotime trajectory analysis of combined single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin with sequencing supports the variable differentiation capacity of each subtype and implicate key transcription factors SPI1, SPIB, BCL11A, and XBP1 in these features. The existence and generalizability of the 2 disease subtypes were validated further using hierarchical clustering of bulk RNA-sequencing data from a secondary set of patients. The biological significance of the subtypes was further established using whole-genome sequencing, in which it was shown that CXCR4, NIK, and ARID1A mutations occur predominantly in the MBC-like subtype, and 6q deletions in the PC-like subtype. We conclude that the variable differentiation blockade seen in WM manifests itself clinically as 2 disease subtypes with distinct epigenetic, mutational, transcriptional, and clinical features, with potential implications for WM treatment strategies.

1.
Alaggio
R
,
Amador
C
,
Anagnostopoulos
I
, et al
.
The 5th edition of the World Health Organization Classification of haematolymphoid tumours: lymphoid neoplasms [published correction appears in Leukemia. 2023;37(9):1944-1951]
.
Leukemia
.
2022
;
36
(
7
):
1720
-
1748
.
2.
San Miguel
J
,
Vidriales
M
,
Ocio
E
, et al
.
Immunophenotypic analysis of Waldenstrom's macroglobulinemia
.
Semin Onco
.
2003
;
30
(
2
):
187
-
195
.
3.
Treon
SP
,
Xu
L
,
Yang
G
, et al
.
MYD88 L265P somatic mutation in Waldenström's macroglobulinemia
.
N Engl J Med
.
2012
;
367
(
9
):
826
-
833
.
4.
Deguine
J
,
Barton
GM
.
MyD88: a central player in innate immune signaling
.
F1000Prime Rep
.
2014
;
6
:
97
.
5.
Fitzgerald
KA
,
Kagan
JC
.
Toll-like receptors and the control of immunity
.
Cell
.
2020
;
180
(
6
):
1044
-
1066
.
6.
Munshi
M
,
Liu
X
,
Kofides
A
, et al
.
A new role for the SRC family kinase HCK as a driver of SYK activation in MYD88 mutated lymphomas
.
Blood Adv
.
2022
;
6
(
11
):
3332
-
3338
.
7.
Munshi
M
,
Liu
X
,
Chen
JG
, et al
.
SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas
.
Blood Cancer J
.
2020
;
10
(
1
):
12
.
8.
Hunter
ZR
,
Xu
L
,
Yang
G
, et al
.
The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis
.
Blood
.
2014
;
123
(
11
):
1637
-
1646
.
9.
Treon
SP
,
Cao
Y
,
Xu
L
,
Yang
G
,
Liu
X
,
Hunter
ZR
.
Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenström macroglobulinemia
.
Blood
.
2014
;
123
(
18
):
2791
-
2796
.
10.
Forgeard
N
,
Baron
M
,
Caron
J
, et al
.
Inflammation in Waldenström macroglobulinemia is associated with 6q deletion and need for treatment initiation
.
Haematologica
.
2022
;
107
(
11
):
2720
-
2724
.
11.
Schop
RFJ
,
Kuehl
WM
,
Van Wier
SA
, et al
.
Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions
.
Blood
.
2002
;
100
(
8
):
2996
-
3001
.
12.
Nguyen-Khac
F
,
Lambert
J
,
Chapiro
E
, et al;
Groupe Français d'Etude de la Leucémie Lymphoïde Chronique et Maladie de Waldenström (GFCLL/MW)
Groupe Ouest-Est d’étude des Leucémie Aiguës et Autres Maladies du Sang (GOELAMS)
Groupe d’Etude des Lymphomes de l’Adulte (GELA)
.
Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenström's macroglobulinemia
.
Haematologica
.
2013
;
98
(
4
):
649
-
654
.
13.
Guerrera
ML
,
Tsakmaklis
N
,
Xu
L
, et al
.
MYD88 mutated and wild-type Waldenström’s Macroglobulinemia: characterization of chromosome 6q gene losses and their mutual exclusivity with mutations in CXCR4
.
Haematologica
.
2018
;
103
(
9
):
e408
-
e411
.
14.
Treon
SP
,
Tripsas
CK
,
Meid
K
, et al
.
Ibrutinib in previously treated Waldenstrom's macroglobulinemia
.
N Engl J Med
.
2015
;
372
(
15
):
1430
-
1440
.
15.
Dimopoulos
MA
,
Opat
S
,
D'Sa
S
, et al
.
Zanubrutinib versus ibrutinib in symptomatic Waldenstrom macroglobulinemia: final analysis from the randomized phase III ASPEN study
.
J Clin Oncol
.
2023
;
41
(
33
):
5099
-
5106
.
16.
Roos-Weil
D
,
Giacopelli
B
,
Armand
M
, et al
.
Identification of two DNA methylation subtypes of Waldenström's macroglobulinemia with plasma and memory B cell features
.
Blood
.
2020
;
136
(
5
):
585
-
595
.
17.
King
HW
,
Wells
KL
,
Shipony
Z
, et al
.
Integrated single-cell transcriptomics and epigenomics reveals strong germinal center–associated etiology of autoimmune risk loci
.
Sci Immunol
.
2021
;
6
(
64
):
eabh3768
.
18.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
19.
Domínguez Conde
C
,
Xu
C
,
Jarvis
L
, et al
.
Cross-tissue immune cell analysis reveals tissue-specific features in humans
.
Science
.
2022
;
376
(
6594
):
eabl5197
.
20.
Xu
C
,
Prete
M
,
Webb
S
, et al
.
Automatic cell-type harmonization and integration across Human Cell Atlas datasets
.
Cell
.
2023
;
186
(
26
):
5876
-
5891.e20
.
21.
Song
L
,
Cohen
D
,
Ouyang
Z
,
Cao
Y
,
Hu
X
,
Liu
XS
.
TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data
.
Nat Methods
.
2021
;
18
(
6
):
627
-
630
.
22.
Granja
JM
,
Corces
MR
,
Pierce
SE
, et al
.
ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
.
Nat Genet
.
2021
;
53
(
6
):
935
.
23.
Korsunsky
I
,
Millard
N
,
Fan
J
, et al
.
Fast, sensitive and accurate integration of single-cell data with Harmony
.
Nat Methods
.
2019
;
16
(
12
):
1289
-
1296
.
24.
Schep
AN
,
Wu
B
,
Buenrostro
JD
,
Greenleaf
WJ
.
chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data
.
Nat Methods
.
2017
;
14
(
10
):
975
-
978
.
25.
Cao
J
,
Spielmann
M
,
Qiu
X
, et al
.
The single-cell transcriptional landscape of mammalian organogenesis
.
Nature
.
2019
;
566
(
7745
):
496
-
502
.
26.
Van Keimpema
M
,
Grüneberg
LJ
,
Mokry
M
, et al
.
FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-κB to promote survival of human B cells
.
Blood
.
2014
;
124
(
23
):
3431
-
3440
.
27.
Agarwal
N
,
Kim
CH
,
Kunkalla
K
, et al
.
Smoothened (SMO) is an adaptor protein that recruits TRAF6 and phospholipase C gamma 2 (PLCg2) to enhance the activation of NF-Kb signaling pathway
.
Blood
.
2015
;
126
(
23
):
3907
.
28.
Ingham
RJ
,
Holgado-Madruga
M
,
Siu
C
,
Wong
AJ
,
Gold
MR
.
The Gab1 protein is a docking site for multiple proteins involved in signaling by the B cell antigen receptor
.
J Biol Chem
.
1998
;
273
(
46
):
30630
-
30637
.
29.
Sun
JY
,
Xu
L
,
Tseng
H
, et al
.
Histone deacetylase inhibitors demonstrate significant preclinical activity as single agents, and in combination with bortezomib in Waldenström's macroglobulinemia
.
Clin Lymphoma Myeloma Leuk
.
2011
;
11
(
1
):
152
-
156
.
30.
Trojani
A
,
Di Camillo
B
,
Bossi
LE
, et al
.
Identification of a candidate gene set signature for the risk of progression in IgM MGUS to smoldering/symptomatic Waldenström macroglobulinemia (WM) by a comparative transcriptome analysis of B cells and plasma cells
.
Cancers
.
2021
;
13
(
8
):
1837
.
31.
Ji
L
,
Huo
X
,
Zhang
Y
,
Yan
Z
,
Wang
Q
,
Wen
B
.
TOPORS, a tumor suppressor protein, contributes to the maintenance of higher-order chromatin architecture
.
Biochim Biophys Acta Gene Regul Mech
.
2020
;
1863
(
5
):
194518
.
32.
Lin
D
,
Ippolito
GC
,
Zong
R-T
,
Bryant
J
,
Koslovsky
J
,
Tucker
P
.
Bright/ARID3A contributes to chromatin accessibility of the immunoglobulin heavy chain enhancer
.
Mol Cancer
.
2007
;
6
(
1
):
23
.
33.
Debaize
L
,
Troadec
M-B
.
The master regulator FUBP1: its emerging role in normal cell function and malignant development
.
Cell Mol Life Sci
.
2019
;
76
(
2
):
259
-
281
.
34.
De Martino
M
,
Nicolau-Neto
P
,
Ribeiro Pinto
LF
, et al
.
HMGA1 induces EZH2 overexpression in human B-cell lymphomas
.
Am J Cancer Res
.
2021
;
11
(
5
):
2174
-
2187
.
35.
Laidlaw
BJ
,
Cyster
JG
.
Transcriptional regulation of memory B cell differentiation
.
Nat Rev Immunol
.
2021
;
21
(
4
):
209
-
220
.
36.
Horiuchi
S
,
Koike
T
,
Takebuchi
H
, et al
.
SpiB regulates the expression of B-cell-related genes and increases the longevity of memory B cells
.
Front Immunol
.
2023
;
14
:
1250719
.
37.
Zhou
Y
,
Liu
X
,
Xu
L
, et al
.
Transcriptional repression of plasma cell differentiation is orchestrated by aberrant over-expression of the ETS factor SPIB in Waldenström macroglobulinaemia
.
Br J Haematol
.
2014
;
166
(
5
):
677
-
689
.
38.
Roos-Weil
D
,
Decaudin
C
,
Armand
M
, et al
.
A recurrent activating missense mutation in Waldenström macroglobulinemia affects the DNA binding of the ETS transcription factor SPI1 and enhances proliferation
.
Cancer Discov
.
2019
;
9
(
6
):
796
-
811
.
39.
Shaffer
AL
,
Shapiro-Shelef
M
,
Iwakoshi
NN
, et al
.
XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation
.
Immunity
.
2004
;
21
(
1
):
81
-
93
.
40.
Gass
JN
,
Gunn
KE
,
Sriburi
R
,
Brewer
JW
.
Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response
.
Trends Immunol
.
2004
;
25
(
1
):
17
-
24
.
41.
Gilmore
TD
.
The Rel/NF-κB signal transduction pathway: introduction
.
Oncogene
.
1999
;
18
(
49
):
6842
-
6844
.
42.
Vetter
G
,
Le Béchec
A
,
Muller
J
, et al
.
Time-resolved analysis of transcriptional events during SNAI1-triggered epithelial to mesenchymal transition
.
Biochem Biophys Res Commun
.
2009
;
385
(
4
):
485
-
491
.
43.
Zhu
Q-Q
,
Ma
C
,
Wang
Q
,
Song
Y
,
Lv
T
.
The role of TWIST1 in epithelial-mesenchymal transition and cancers
.
Tumour Biol
.
2016
;
37
(
1
):
185
-
197
.
44.
Mondello
P
,
Paludo
J
,
Novak
JP
, et al
.
Molecular clusters and tumor-immune drivers of IgM monoclonal gammopathies
.
Clinical Cancer Research
.
2023
;
29
(
5
):
957
-
970
.
45.
Sun
H
,
Fang
T
,
Wang
T
, et al
.
Single-cell profiles reveal tumor cell heterogeneity and immunosuppressive microenvironment in Waldenström macroglobulinemia
.
J Transl Med
.
2022
;
20
(
1
):
576
.
46.
Lim
JH
,
Wang
JQ
,
Webb
F
, et al
.
Plasma cells arise from differentiation of clonal lymphocytes and secrete IgM in Waldenström macroglobulinemia
.
Iscience
.
2022
;
25
(
8
):
104856
.
47.
Bagratuni
T
,
Aktypi
F
,
Theologi
O
, et al
.
Single-cell analysis of MYD88L265P and MYD88WT Waldenström macroglobulinemia patients
.
HemaSphere
.
2024
;
8
(
2
):
e27
.
48.
Hunter
ZR
,
Tsakmaklis
N
,
Richardson
K
, et al
.
Changes in methylation and chromatin accessibility underlie subtype classification and disease evolution in Waldenström's macroglobulinemia
.
Blood
.
2023
;
142
(
suppl 1
):
755
.
49.
Carotta
S
,
Willis
SN
,
Hasbold
J
, et al
.
The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation
.
J Exp Med
.
2014
;
211
(
11
):
2169
-
2181
.
50.
Care
MA
,
Cocco
M
,
Laye
JP
, et al
.
SPIB and BATF provide alternate determinants of IRF4 occupancy in diffuse large B-cell lymphoma linked to disease heterogeneity
.
Nucleic Acids Res
.
2014
;
42
(
12
):
7591
-
7610
.
51.
Reimold
AM
,
Iwakoshi
NN
,
Manis
J
, et al
.
Plasma cell differentiation requires the transcription factor XBP-1
.
Nature
.
2001
;
412
(
6844
):
300
-
307
.
52.
Le
TA
,
Chu
VT
,
Lino
AC
, et al
.
Efficient CRISPR-Cas9-mediated mutagenesis in primary human B cells for identifying plasma cell regulators
.
Mol Ther Nucleic Acids
.
2022
;
30
:
621
-
632
.
53.
Trezise
S
,
Nutt
SL
.
The gene regulatory network controlling plasma cell function
.
Immunol Rev
.
2021
;
303
(
1
):
23
-
34
.
54.
Alaterre
E
,
Ovejero
S
,
Bret
C
, et al
.
Integrative single-cell chromatin and transcriptome analysis of human plasma cell differentiation
.
Blood
.
2024
;
144
(
5
):
496
-
509
.
55.
Ochiai
K
,
Maienschein-Cline
M
,
Simonetti
G
, et al
.
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4
.
Immunity
.
2013
;
38
(
5
):
918
-
929
.
56.
Scharer
CD
,
Barwick
BG
,
Guo
M
,
Bally
APR
,
Boss
JM
.
Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs
.
Nat Commun
.
2018
;
9
(
1
):
1698
.
57.
Shao
W
,
Wang
Y
,
Fang
Q
,
Shi
W
,
Qi
H
.
Epigenetic recording of stimulation history reveals BLIMP1–BACH2 balance in determining memory B cell fate upon recall challenge
.
Nat Immunol
.
2024
;
25
(
8
):
1432
-
1444
.
58.
Maclachlan
KH
,
Bagratuni
T
,
Kastritis
E
, et al
.
Waldenström macroglobulinemia whole genome reveals prolonged germinal center activity and late copy number aberrations
.
Blood Adv
.
2023
;
7
(
6
):
971
-
981
.
59.
Willis
SN
,
Tellier
J
,
Liao
Y
, et al
.
Environmental sensing by mature B cells is controlled by the transcription factors PU. 1 and SpiB
.
Nat Commun
.
2017
;
8
(
1
):
1426
.
60.
Roberts
AD
,
Davenport
TM
,
Dickey
AM
,
Ahn
R
,
Sochacki
KA
,
Taraska
JW
.
Structurally distinct endocytic pathways for B cell receptors in B lymphocytes
.
Mol Biol Cell
.
2020
;
31
(
25
):
2826
-
2840
.
61.
Su
H
,
Na
N
,
Zhang
X
,
Zhao
Y
.
The biological function and significance of CD74 in immune diseases
.
Inflamm Res
.
2017
;
66
(
3
):
209
-
216
.
62.
Erdei
A
,
Kovács
KG
,
Nagy-Baló
Z
, et al
.
New aspects in the regulation of human B cell functions by complement receptors CR1, CR2, CR3 and CR4
.
Immunol Lett
.
2021
;
237
:
42
-
57
.
63.
Bhamidipati
K
,
Silberstein
JL
,
Chaichian
Y
, et al
.
CD52 is elevated on B cells of SLE patients and regulates B cell function
.
Front Immunol
.
2020
;
11
:
626820
.
64.
Choe
J-Y
,
Park
M
,
Yun
JY
, et al
.
PELI1 expression is correlated with MYC and BCL6 expression and associated with poor prognosis in diffuse large B-cell lymphoma
.
Mod Pathol
.
2016
;
29
(
11
):
1313
-
1323
.
65.
Castillo
JJ
,
Allan
JN
,
Siddiqi
T
, et al
.
Venetoclax in previously treated Waldenström macroglobulinemia
.
J Clin Oncol
.
2022
;
40
(
1
):
63
-
71
.
You do not currently have access to this content.
Sign in via your Institution