• The IL-1 family cytokines are elevated in MDS, which impacts MSCs in mice.

  • Targeting IL-1R1/NLRP3 signaling can mitigate MDS via the BMME in an age-appropriate MDS model.

Abstract

Myelodysplastic syndromes (MDS) are age-related diseases characterized by bone marrow (BM) dysfunction and an increased risk for developing acute leukemia. Although there is growing evidence that highlight the crucial role of the BM microenvironment (BMME) in MDS, the specific influence of inflammation on BMME changes and the potential benefits of targeting cytokines therapeutically remain to be elucidated. We previously found that interleukin-1 (IL-1) is a driver of aging phenotypes of the BMME and hematopoietic stem and progenitor cells (HSPCs). In this study, BM samples from patients with MDS demonstrated upregulated levels of IL-1 family cytokines, including IL-18. Using highly purified primary BM-derived mesenchymal stromal cells (MSCs), both IL-1b and IL-18 were found to exert direct effects on MSCs, thus influencing their ability to support HSPCs and erythroid progenitors. This confirms the significant involvement of both these IL-1 family cytokines in regulating the BM niche. Furthermore, targeting IL-1 receptor type 1 mitigated these aging phenotypes in older mice. We subsequently employed an age-appropriate murine model of MDS by transplanting NUP98-HOXD13 transgenic mice (NHD13Tg) cells into aged wild-type mice. Treatment with inhibitors that targeted IL-1 receptor-associated kinase 4 (IRAK4) and NOD-like receptor family pyrin domain containing 3 (NLRP3) reversed the proliferation of dysfunctional MSCs and enhanced their functionality. In addition, IRAK4 inhibition selectively suppressed MDS clonal cells while sparing non-MDS cells in the BM. These findings suggest that targeting IL-1 signaling holds promise for MDS treatment by addressing the underlying myeloid malignancy and restoring the altered BMME via BM-MSCs.

1.
Bejar
R
,
Steensma
DP
.
Recent developments in myelodysplastic syndromes
.
Blood
.
2014
;
124
(
18
):
2793
-
2803
.
2.
Sperling
AS
,
Gibson
CJ
,
Ebert
BL
.
The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia
.
Nat Rev Cancer
.
2017
;
17
(
1
):
5
-
19
.
3.
Epling-Burnette
PK
,
List
AF
.
Advancements in the molecular pathogenesis of myelodysplastic syndrome
.
Curr Opin Hematol
.
2009
;
16
(
2
):
70
-
76
.
4.
Ogawa
S
.
Genetics of MDS
.
Blood
.
2019
;
133
(
10
):
1049
-
1059
.
5.
Cazzola
M
,
Della Porta
MG
,
Malcovati
L
.
The genetic basis of myelodysplasia and its clinical relevance
.
Blood
.
2013
;
122
(
25
):
4021
-
4034
.
6.
Calvi
LM
,
Link
DC
.
Cellular complexity of the bone marrow hematopoietic stem cell niche
.
Calcif Tissue Int
.
2014
;
94
(
1
):
112
-
124
.
7.
Pinho
S
,
Frenette
PS
.
Haematopoietic stem cell activity and interactions with the niche
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
5
):
303
-
320
.
8.
Ridge
SM
,
Sullivan
FJ
,
Glynn
SA
.
Mesenchymal stem cells: key players in cancer progression
.
Mol Cancer
.
2017
;
16
(
1
):
31
.
9.
Mendez-Ferrer
S
,
Michurina
TV
,
Ferraro
F
, et al
.
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
.
Nature
.
2010
;
466
(
7308
):
829
-
834
.
10.
Pinho
S
,
Lacombe
J
,
Hanoun
M
, et al
.
PDGFRα and CD51 mark human nestin+ sphereforming mesenchymal stem cells capable of hematopoietic progenitor cell expansion
.
J Exp Med
.
2013
;
210
(
7
):
1351
-
1367
.
11.
Ding
L
,
Saunders
TL
,
Enikolopov
G
,
Morrison
SJ
.
Endothelial and perivascular cells maintain haematopoietic stem cells
.
Nature
.
2012
;
481
(
7382
):
457
-
462
.
12.
Sugiyama
T
,
Kohara
H
,
Noda
M
,
Nagasawa
T
.
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
.
Immunity
.
2006
;
25
(
6
):
977
-
988
.
13.
Pronk
E
,
Raaijmakers
M
.
The mesenchymal niche in MDS
.
Blood
.
2019
;
133
(
10
):
1031
-
1038
.
14.
Li
AJ
,
Calvi
LM
.
The microenvironment in myelodysplastic syndromes: niche-mediated disease initiation and progression
.
Exp Hematol
.
2017
;
55
:
3
-
18
.
15.
Raaijmakers
MH
,
Mukherjee
S
,
Guo
S
, et al
.
Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia
.
Nature
.
2010
;
464
(
7290
):
852
-
857
.
16.
Kode
A
,
Manavalan
JS
,
Mosialou
I
, et al
.
Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts
.
Nature
.
2014
;
506
(
7487
):
240
-
244
.
17.
Zambetti
NA
,
Ping
Z
,
Chen
S
, et al
.
Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia
.
Cell Stem Cell
.
2016
;
19
(
5
):
613
-
627
.
18.
Dong
L
,
Yu
WM
,
Zheng
H
, et al
.
Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment
.
Nature
.
2016
;
539
(
7628
):
304
-
308
.
19.
Walkley
CR
,
Shea
JM
,
Sims
NA
,
Purton
LE
,
Orkin
SH
.
Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment
.
Cell
.
2007
;
129
(
6
):
1081
-
1095
.
20.
Walkley
CR
,
Olsen
GH
,
Dworkin
S
, et al
.
A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency
.
Cell
.
2007
;
129
(
6
):
1097
-
1110
.
21.
Kim
YW
,
Koo
BK
,
Jeong
HW
, et al
.
Defective Notch activation in microenvironment leads to myeloproliferative disease
.
Blood
.
2008
;
112
(
12
):
4628
-
4638
.
22.
Geyh
S
,
Oz
S
,
Cadeddu
RP
, et al
.
Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells
.
Leukemia
.
2013
;
27
(
9
):
1841
-
1851
.
23.
Kawano
Y
,
Kawano
H
,
Ghoneim
D
, et al
.
Myelodysplastic syndromes disable human CD271+VCAM1+CD146+ niches supporting normal hematopoietic stem/progenitor cells
.
bioRxiv
.
Preprint posted online 28 April 2023
.
24.
Azadniv
M
,
Myers
JR
,
McMurray
HR
, et al
.
Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support
.
Leukemia
.
2020
;
34
(
2
):
391
-
403
.
25.
Balderman
SR
,
Li
AJ
,
Hoffman
CM
, et al
.
Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome
.
Blood
.
2016
;
127
(
5
):
616
-
625
.
26.
Frisch
BJ
,
Hoffman
CM
,
Latchney
SE
, et al
.
Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B
.
JCI Insight
.
2019
;
5
(
10
):
e124213
.
27.
Litmanovich
A
,
Khazim
K
,
Cohen
I
.
The role of interleukin-1 in the pathogenesis of cancer and its potential as a therapeutic target in clinical practice
.
Oncol Ther
.
2018
;
6
(
2
):
109
-
127
.
28.
Lin
YW
,
Slape
C
,
Zhang
Z
,
Aplan
PD
.
NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia
.
Blood
.
2005
;
106
(
1
):
287
-
295
.
29.
Kawano
Y
,
Kawano
H
,
Busch
S
, et al
.
Persistent contamination by bone and bone marrow-derived macrophages obscures functional assessment of tissue-dependent heterogeneity in mesenchymal stromal cells [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
5623
.
30.
Ho
TC
,
LaMere
M
,
Stevens
BM
, et al
.
Evolution of acute myelogenous leukemia stem cell properties after treatment and progression
.
Blood
.
2016
;
128
(
13
):
1671
-
1678
.
31.
Kilkenny
C
,
Browne
WJ
,
Cuthill
IC
,
Emerson
M
,
Altman
DG
.
Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research
.
PLoS Biol
.
2010
;
8
(
6
):
e1000412
.
32.
McColl
SR
,
Clark-Lewis
I
.
Inhibition of murine neutrophil recruitment in vivo by CXC chemokine receptor antagonists
.
J Immunol
.
1999
;
163
(
5
):
2829
-
2835
.
33.
Paudel
S
,
Baral
P
,
Ghimire
L
, et al
.
CXCL1 regulates neutrophil homeostasis in pneumonia-derived sepsis caused by Streptococcus pneumoniae serotype 3
.
Blood
.
2019
;
133
(
12
):
1335
-
1345
.
34.
Kfoury
YS
,
Ji
F
,
Jain
E
, et al
.
The bone marrow stroma in human myelodysplastic syndrome reveals alterations that regulate disease progression
.
Blood Adv
.
2023
;
7
(
21
):
6608
-
6623
.
35.
Zhao
H
,
Chen
Q
,
Alam
A
, et al
.
The role of osteopontin in the progression of solid organ tumour
.
Cell Death Dis
.
2018
;
9
(
3
):
356
.
36.
Legros
L
,
Slama
B
,
Karsenti
JM
, et al
.
Treatment of myelodysplastic syndromes with excess of blasts by bevacizumab is well tolerated and is associated with a decrease of VEGF plasma level
.
Ann Hematol
.
2012
;
91
(
1
):
39
-
46
.
37.
Silberstein
L
,
Goncalves
KA
,
Kharchenko
PV
, et al
.
Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators
.
Cell Stem Cell
.
2016
;
19
(
4
):
530
-
543
.
38.
Ogawa
M
,
Nishikawa
S
,
Ikuta
K
, et al
.
B cell ontogeny in murine embryo studied by a culture system with the monolayer of a stromal cell clone, ST2: B cell progenitor develops first in the embryonal body rather than in the yolk sac
.
EMBO J
.
1988
;
7
(
5
):
1337
-
1343
.
39.
Pronk
CJ
,
Rossi
DJ
,
Mansson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell
.
2007
;
1
(
4
):
428
-
442
.
40.
Morikawa
S
,
Mabuchi
Y
,
Kubota
Y
, et al
.
Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
.
J Exp Med
.
2009
;
206
(
11
):
2483
-
2496
.
41.
Greenbaum
A
,
Hsu
YM
,
Day
RB
, et al
.
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
.
Nature
.
2013
;
495
(
7440
):
227
-
230
.
42.
Choumerianou
DM
,
Martimianaki
G
,
Stiakaki
E
,
Kalmanti
L
,
Kalmanti
M
,
Dimitriou
H
.
Comparative study of stemness characteristics of mesenchymal cells from bone marrow of children and adults
.
Cytotherapy
.
2010
;
12
(
7
):
881
-
887
.
43.
Glaccum
MB
,
Stocking
KL
,
Charrier
K
, et al
.
Phenotypic and functional characterization of mice that lack the type I receptor for IL-1
.
J Immunol
.
1997
;
159
(
7
):
3364
-
3371
.
44.
Okamura
H
,
Tsutsi
H
,
Komatsu
T
, et al
.
Cloning of a new cytokine that induces IFN-gamma production by T cells
.
Nature
.
1995
;
378
(
6552
):
88
-
91
.
45.
Ushio
S
,
Namba
M
,
Okura
T
, et al
.
Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein
.
J Immunol
.
1996
;
156
(
11
):
4274
-
4279
.
46.
Feng
X
,
Scheinberg
P
,
Wu
CO
, et al
.
Cytokine signature profiles in acquired aplastic anemia and myelodysplastic syndromes
.
Haematologica
.
2011
;
96
(
4
):
602
-
606
.
47.
Shi
X
,
Zheng
Y
,
Xu
L
,
Cao
C
,
Dong
B
,
Chen
X
.
The inflammatory cytokine profile of myelodysplastic syndromes: a meta-analysis
.
Medicine (Baltimore)
.
2019
;
98
(
22
):
e15844
.
48.
Kornblau
SM
,
McCue
D
,
Singh
N
,
Chen
W
,
Estrov
Z
,
Coombes
KR
.
Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia
.
Blood
.
2010
;
116
(
20
):
4251
-
4261
.
49.
Schneider
M
,
Rolfs
C
,
Trumpp
M
, et al
.
Activation of distinct inflammatory pathways in subgroups of LR-MDS
.
Leukemia
.
2023
;
37
(
8
):
1709
-
1718
.
50.
Elzinga
BM
,
Twomey
C
,
Powell
JC
,
Harte
F
,
McCarthy
JV
.
Interleukin-1 receptor type 1 is a substrate for gamma-secretase-dependent regulated intramembrane proteolysis
.
J Biol Chem
.
2009
;
284
(
3
):
1394
-
1409
.
51.
Italiani
P
,
Puxeddu
I
,
Napoletano
S
, et al
.
Circulating levels of IL-1 family cytokines and receptors in Alzheimer's disease: new markers of disease progression?
.
J Neuroinflammation
.
2018
;
15
(
1
):
342
.
52.
Arend
WP
,
Malyak
M
,
Smith
MF
, et al
.
Binding of IL-1 alpha, IL-1 beta, and IL-1 receptor antagonist by soluble IL-1 receptors and levels of soluble IL-1 receptors in synovial fluids
.
J Immunol
.
1994
;
153
(
10
):
4766
-
4774
.
53.
Pittenger
MF
,
Discher
DE
,
Peault
BM
,
Phinney
DG
,
Hare
JM
,
Caplan
AI
.
Mesenchymal stem cell perspective: cell biology to clinical progress
.
NPJ Regen Med
.
2019
;
4
:
22
.
54.
Lee
JK
,
Kim
SH
,
Lewis
EC
,
Azam
T
,
Reznikov
LL
,
Dinarello
CA
.
Differences in signaling pathways by IL-1beta and IL-18
.
Proc Natl Acad Sci U S A
.
2004
;
101
(
23
):
8815
-
8820
.
55.
Singer
JW
,
Fleischman
A
,
Al-Fayoumi
S
,
Mascarenhas
JO
,
Yu
Q
,
Agarwal
A
.
Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy
.
Oncotarget
.
2018
;
9
(
70
):
33416
-
33439
.
56.
Mertens
M
,
Singh
JA
.
Anakinra for rheumatoid arthritis
.
Cochrane Database Syst Rev
.
2009
(
1
):
CD005121
.
57.
Khani
E
,
Shahrabi
M
,
Rezaei
H
,
Pourkarim
F
,
Afsharirad
H
,
Solduzian
M
.
Current evidence on the use of anakinra in COVID-19
.
Int Immunopharmacol
.
2022
;
111
:
109075
.
58.
Martinon
F
,
Burns
K
,
Tschopp
J
.
The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta
.
Mol Cell
.
2002
;
10
(
2
):
417
-
426
.
59.
Coll
RC
,
Robertson
AA
,
Chae
JJ
, et al
.
A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases
.
Nat Med
.
2015
;
21
(
3
):
248
-
255
.
You do not currently have access to this content.
Sign in via your Institution