• IL-9 secreted by AML LSCs epigenetically activates CD4+ T cells and induces Th1 skewing.

  • IFN-γ and TNF-α produced by activated CD4+ T cells expand LSCs.

Abstract

In acute myeloid leukemia (AML), leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) interact with various cell types in the bone marrow (BM) microenvironment, regulating their expansion and differentiation. To study the interaction of CD4+ and CD8+ T cells in the BM with LSCs and LPCs, we analyzed their transcriptome and predicted cell-cell interactions by unbiased high-throughput correlation network analysis. We found that CD4+ T cells in the BM of patients with AML were activated and skewed toward T-helper (Th)1 polarization, whereas interleukin-9 (IL-9)–producing (Th9) CD4+ T cells were absent. In contrast to normal hematopoietic stem cells, LSCs produced IL-9, and the correlation modeling predicted IL9 in LSCs as a main hub gene that activates CD4+ T cells in AML. Functional validation revealed that IL-9 receptor signaling in CD4+ T cells leads to activation of the JAK-STAT pathway that induces the upregulation of KMT2A and KMT2C genes, resulting in methylation on histone H3 at lysine 4 to promote genome accessibility and transcriptional activation. This induced Th1-skewing, proliferation, and effector cytokine secretion, including interferon gamma (IFN-γ) and tumor necrosis factor α (TNF-α). IFN-γ and, to a lesser extent, TNF-α produced by activated CD4+ T cells induced the expansion of LSCs. In accordance with our findings, high IL9 expression in LSCs and high IL9R, TNF, and IFNG expression in BM–infiltrating CD4+ T cells correlated with worse overall survival in AML. Thus, IL-9 secreted by AML LSCs shapes a Th1-skewed immune environment that promotes their expansion by secreting IFN-γ and TNF-α.

1.
Estey
E
,
Dohner
H
.
Acute myeloid leukaemia
.
Lancet
.
2006
;
368
(
9550
):
1894
-
1907
.
2.
Hoesel
B
,
Schmid
JA
.
The complexity of NF-kB signaling in inflammation and cancer
.
Mol Cancer
.
2013
;
12
:
86
.
3.
Zeisig
BB
,
Kulasekararaj
AG
,
Mufti
GJ
,
So
CW
.
SnapShot: acute myeloid leukemia
.
Cancer Cell
.
2012
;
22
(
5
):
698
-
698.e1
.
4.
Döhner
H
,
Wei
AH
,
Appelbaum
FR
, et al
.
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN
.
Blood
.
2022
;
140
(
12
):
1345
-
1377
.
5.
Lapidot
T
,
Sirard
C
,
Vormoor
J
, et al
.
A cell initiating human acute myeloid leukaemia after transplantation into SCID mice
.
Nature
.
1994
;
367
(
6464
):
645
-
648
.
6.
Hope
KJ
,
Jin
L
,
Dick
JE
.
Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity
.
Nat Immunol
.
2004
;
5
(
7
):
738
-
743
.
7.
Guzman
ML
,
Allan
JN
.
Concise review: leukemia stem cells in personalized medicine
.
Stem Cells
.
2014
;
32
(
4
):
844
-
851
.
8.
Murone
M
,
Radpour
R
,
Attinger
A
, et al
.
The multi-kinase inhibitor debio 0617B reduces maintenance and self-renewal of primary human AML CD34(+) stem/progenitor cells
.
Mol Cancer Ther
.
2017
;
16
(
8
):
1497
-
1510
.
9.
Radpour
R
,
Forouharkhou
F
.
Single-cell analysis of tumors: creating new value for molecular biomarker discovery of cancer stem cells and tumor-infiltrating immune cells
.
World J Stem Cells
.
2018
;
10
(
11
):
160
-
171
.
10.
Naef
P
,
Radpour
R
,
Jaeger-Ruckstuhl
CA
, et al
.
IL-33-ST2 signaling promotes stemness in subtypes of myeloid leukemia cells through the Wnt and Notch pathways
.
Sci Signal
.
2023
;
16
(
800
):
eadd7705
.
11.
Shiozawa
Y
,
Havens
AM
,
Pienta
KJ
,
Taichman
RS
.
The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites
.
Leukemia
.
2008
;
22
(
5
):
941
-
950
.
12.
Fauci
AS
.
Human bone marrow lymphocytes. I. Distribution of lymphocyte subpopulations in the bone marrow of normal individuals
.
J Clin Invest
.
1975
;
56
(
1
):
98
-
110
.
13.
Zeng
D
,
Hoffmann
P
,
Lan
F
,
Huie
P
,
Higgins
J
,
Strober
S
.
Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation
.
Blood
.
2002
;
99
(
4
):
1449
-
1457
.
14.
Westermann
J
,
Pabst
R
.
Distribution of lymphocyte subsets and natural killer cells in the human body
.
Clin Invest
.
1992
;
70
(
7
):
539
-
544
.
15.
Camacho
V
,
Matkins
VR
,
Patel
SB
, et al
.
Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10
.
JCI Insight
.
2020
;
5
(
22
):
e135681
.
16.
Zou
L
,
Barnett
B
,
Safah
H
, et al
.
Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals
.
Cancer Res
.
2004
;
64
(
22
):
8451
-
8455
.
17.
Riether
C
.
Regulation of hematopoietic and leukemia stem cells by regulatory T cells
.
Front Immunol
.
2022
;
13
:
1049301
.
18.
Berard
M
,
Tough
DF
.
Qualitative differences between naïve and memory T cells
.
Immunology
.
2002
;
106
(
2
):
127
-
138
.
19.
Basu
A
,
Ramamoorthi
G
,
Albert
G
, et al
.
Differentiation and regulation of T(H) cells: a balancing act for cancer immunotherapy
.
Front Immunol
.
2021
;
12
:
669474
.
20.
Walker
JA
,
McKenzie
ANJ
.
T(H)2 cell development and function
.
Nat Rev Immunol
.
2018
;
18
(
2
):
121
-
133
.
21.
Schürch
CM
,
Caraccio
C
,
Nolte
MA
.
Diversity, localization, and (patho)physiology of mature lymphocyte populations in the bone marrow
.
Blood
.
2021
;
137
(
22
):
3015
-
3026
.
22.
Monteiro
JP
,
Benjamin
A
,
Costa
ES
,
Barcinski
MA
,
Bonomo
A
.
Normal hematopoiesis is maintained by activated bone marrow CD4+ T cells
.
Blood
.
2005
;
105
(
4
):
1484
-
1491
.
23.
Austin
R
,
Smyth
MJ
,
Lane
SW
.
Harnessing the immune system in acute myeloid leukaemia
.
Crit Rev Oncol Hematol
.
2016
;
103
:
62
-
77
.
24.
Masarova
L
,
Kantarjian
H
,
Garcia-Mannero
G
,
Ravandi
F
,
Sharma
P
,
Daver
N
.
Harnessing the immune system against leukemia: monoclonal antibodies and checkpoint strategies for AML
.
Adv Exp Med Biol
.
2017
;
995
:
73
-
95
.
25.
Lesokhin
AM
,
Callahan
MK
,
Postow
MA
,
Wolchok
JD
.
On being less tolerant: enhanced cancer immunosurveillance enabled by targeting checkpoints and agonists of T cell activation
.
Sci Transl Med
.
2015
;
7
(
280
):
280sr1
.
26.
Radpour
R
,
Stucki
M
,
Riether
C
,
Ochsenbein
AF
.
Epigenetic silencing of immune-checkpoint receptors in bone marrow- infiltrating T cells in acute myeloid leukemia
.
Front Oncol
.
2021
;
11
:
663406
.
27.
Riether
C
,
Schurch
CM
,
Buhrer
ED
, et al
.
CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia
.
J Exp Med
.
2017
;
214
(
2
):
359
-
380
.
28.
Riether
C
,
Schurch
CM
,
Flury
C
, et al
.
Tyrosine kinase inhibitor-induced CD70 expression mediates drug resistance in leukemia stem cells by activating Wnt signaling
.
Sci Transl Med
.
2015
;
7
(
298
):
298ra119
.
29.
Hashimoto
H
,
Güngör
D
,
Krickeberg
N
, et al
.
T(H)1 cytokines induce senescence in AML
.
Leuk Res
.
2022
;
117
:
106842
.
30.
Kondo
A
,
Yamashita
T
,
Tamura
H
, et al
.
Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes
.
Blood
.
2010
;
116
(
7
):
1124
-
1131
.
31.
Zhou
X
,
Li
Z
,
Zhou
J
.
Tumor necrosis factor α in the onset and progression of leukemia
.
Exp Hematol
.
2017
;
45
:
17
-
26
.
32.
Ersvaer
E
,
Hampson
P
,
Hatfield
K
, et al
.
T cells remaining after intensive chemotherapy for acute myelogenous leukemia show a broad cytokine release profile including high levels of interferon-gamma that can be further increased by a novel protein kinase C agonist PEP005
.
Cancer Immunol Immunother
.
2007
;
56
(
6
):
913
-
925
.
33.
Radpour
R
,
Riether
C
,
Simillion
C
,
Hopner
S
,
Bruggmann
R
,
Ochsenbein
AF
.
CD8(+) T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia
.
Leukemia
.
2019
;
33
(
10
):
2379
-
2392
.
34.
Mrózek
K
,
Marcucci
G
,
Nicolet
D
, et al
.
Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia
.
J Clin Oncol
.
2012
;
30
(
36
):
4515
-
4523
.
35.
Backer
RA
,
Hombrink
P
,
Helbig
C
,
Amsen
D
.
The fate choice between effector and memory T cell lineages: asymmetry, signal integration, and feedback to create bistability
.
Adv Immunol
.
2018
;
137
:
43
-
82
.
36.
Raphael
I
,
Nalawade
S
,
Eagar
TN
,
Forsthuber
TG
.
T cell subsets and their signature cytokines in autoimmune and inflammatory diseases
.
Cytokine
.
2015
;
74
(
1
):
5
-
17
.
37.
Chancellor
A
,
Gadola
SD
,
Mansour
S
.
The versatility of the CD1 lipid antigen presentation pathway
.
Immunology
.
2018
;
154
(
2
):
196
-
203
.
38.
Negedu
MN
,
Duckworth
CA
,
Yu
LG
.
Galectin-2 in health and diseases
.
Int J Mol Sci
.
2022
;
24
(
1
):
341
.
39.
Zeng
AGX
,
Bansal
S
,
Jin
L
, et al
.
A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia
.
Nat Med
.
2022
;
28
(
6
):
1212
-
1223
.
40.
Lemoli
RM
,
Fortuna
A
,
Tafuri
A
, et al
.
Interleukin-9 stimulates the proliferation of human myeloid leukemic cells
.
Blood
.
1996
;
87
(
9
):
3852
-
3859
.
41.
Park
K
,
Kim
JA
,
Kim
J
.
Transcriptional regulation by the KMT2 histone H3K4 methyltransferases
.
Biochim Biophys Acta Gene Regul Mech
.
2020
;
1863
(
7
):
194545
.
42.
Demoulin
JB
,
Uyttenhove
C
,
Van Roost
E
, et al
.
A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9
.
Mol Cell Biol
.
1996
;
16
(
9
):
4710
-
4716
.
43.
Stavropoulou
V
,
Kaspar
S
,
Brault
L
, et al
.
MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome
.
Cancer Cell
.
2016
;
30
(
1
):
43
-
58
.
44.
Verhaak
RG
,
Wouters
BJ
,
Erpelinck
CA
, et al
.
Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling
.
Haematologica
.
2009
;
94
(
1
):
131
-
134
.
45.
de Jonge
HJ
,
Valk
PJ
,
Veeger
NJ
, et al
.
High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia
.
Blood
.
2010
;
116
(
10
):
1747
-
1754
.
46.
Wang
YH
,
Lin
CC
,
Hsu
CL
, et al
.
Distinct clinical and biological characteristics of acute myeloid leukemia with higher expression of long noncoding RNA KIAA0125
.
Ann Hematol
.
2021
;
100
(
2
):
487
-
498
.
47.
Riether
C
,
Schurch
CM
,
Ochsenbein
AF
.
Regulation of hematopoietic and leukemic stem cells by the immune system
.
Cell Death Differ
.
2015
;
22
(
2
):
187
-
198
.
48.
Baitsch
L
,
Baumgaertner
P
,
Devevre
E
, et al
.
Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients
.
J Clin Invest
.
2011
;
121
(
6
):
2350
-
2360
.
49.
Feng
X
,
Xu
H
,
Yin
L
,
Yin
D
,
Jiang
Y
.
CD4+ T-cell subsets in aplastic anemia, myelodysplastic syndrome, and acute myelogenous leukemia patients: a comparative analysis
.
Clin Lab
.
2023
;
69
(
07
):
221220
.
50.
Szczepanski
MJ
,
Szajnik
M
,
Czystowska
M
, et al
.
Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia
.
Clin Cancer Res
.
2009
;
15
(
10
):
3325
-
3332
.
51.
Ustun
C
,
Miller
JS
,
Munn
DH
,
Weisdorf
DJ
,
Blazar
BR
.
Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation?
.
Blood
.
2011
;
118
(
19
):
5084
-
5095
.
52.
Wan
J
,
Wu
Y
,
Ji
X
, et al
.
IL-9 and IL-9-producing cells in tumor immunity
.
Cell Commun Signal
.
2020
;
18
(
1
):
50
.
53.
Veldhoen
M
,
Uyttenhove
C
,
van Snick
J
, et al
.
Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset
.
Nat Immunol
.
2008
;
9
(
12
):
1341
-
1346
.
54.
Li
H
,
Nourbakhsh
B
,
Cullimore
M
,
Zhang
GX
,
Rostami
A
.
IL-9 is important for T-cell activation and differentiation in autoimmune inflammation of the central nervous system
.
Eur J Immunol
.
2011
;
41
(
8
):
2197
-
2206
.
55.
Elyaman
W
,
Bradshaw
EM
,
Uyttenhove
C
, et al
.
IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
31
):
12885
-
12890
.
56.
Feng
LL
,
Gao
JM
,
Li
PP
,
Wang
X
.
IL-9 contributes to immunosuppression mediated by regulatory T cells and mast cells in B-cell non-Hodgkin's lymphoma
.
J Clin Immunol
.
2011
;
31
(
6
):
1084
-
1094
.
57.
Konjević
GM
,
Vuletić
AM
,
Mirjačić Martinović
KM
,
Larsen
AK
,
Jurišić
VB
.
The role of cytokines in the regulation of NK cells in the tumor environment
.
Cytokine
.
2019
;
117
:
30
-
40
.
58.
He
S
,
Tong
Q
,
Bishop
DK
,
Zhang
Y
.
Histone methyltransferase and histone methylation in inflammatory T-cell responses
.
Immunotherapy
.
2013
;
5
(
9
):
989
-
1004
.
59.
LaMere
SA
,
Thompson
RC
,
Komori
HK
,
Mark
A
,
Salomon
DR
.
Promoter H3K4 methylation dynamically reinforces activation-induced pathways in human CD4 T cells
.
Genes Immun
.
2016
;
17
(
5
):
283
-
297
.
60.
Bosselut
R
.
Control of intra-thymic αβ T cell selection and maturation by H3K27 methylation and demethylation
.
Front Immunol
.
2019
;
10
:
688
.
61.
LaMere
SA
,
Thompson
RC
,
Meng
X
,
Komori
HK
,
Mark
A
,
Salomon
DR
.
H3K27 methylation dynamics during CD4 T cell activation: regulation of JAK/STAT and IL12RB2 expression by JMJD3
.
J Immunol
.
2017
;
199
(
9
):
3158
-
3175
.
62.
Zhang
Q
,
Fang
Y
,
Lv
C
, et al
.
Norisoboldine induces the development of Treg cells by promoting fatty acid oxidation-mediated H3K27 acetylation of Foxp3
.
FASEB J
.
2022
;
36
(
4
):
e22230
.
63.
Nakamura
T
,
Kamogawa
Y
,
Bottomly
K
,
Flavell
RA
.
Polarization of IL-4- and IFN-gamma-producing CD4+ T cells following activation of naive CD4+ T cells
.
J Immunol
.
1997
;
158
(
3
):
1085
-
1094
.
64.
Schürch
CM
,
Riether
C
,
Ochsenbein
AF
.
Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells
.
Cell Stem Cell
.
2014
;
14
(
4
):
460
-
472
.
65.
Pronk
CJ
,
Veiby
OP
,
Bryder
D
,
Jacobsen
SE
.
Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors
.
J Exp Med
.
2011
;
208
(
8
):
1563
-
1570
.
66.
Keskinen
P
,
Ronni
T
,
Matikainen
S
,
Lehtonen
A
,
Julkunen
I
.
Regulation of HLA class I and II expression by interferons and influenza A virus in human peripheral blood mononuclear cells
.
Immunology
.
1997
;
91
(
3
):
421
-
429
.
67.
Rimando
JC
,
Chendamarai
E
,
Rettig
MP
, et al
.
Flotetuzumab and other T-cell immunotherapies upregulate MHC class II expression on acute myeloid leukemia cells
.
Blood
.
2023
;
141
(
14
):
1718
-
1723
.
68.
Mojic
M
,
Takeda
K
,
Hayakawa
Y
.
The dark side of IFN-γ: its role in promoting cancer immunoevasion
.
Int J Mol Sci
.
2017
;
19
(
1
):
89
.
69.
Zaidi
MR
,
Davis
S
,
Noonan
FP
, et al
.
Interferon-γ links ultraviolet radiation to melanomagenesis in mice
.
Nature
.
2011
;
469
(
7331
):
548
-
553
.
70.
Schürch
C
,
Riether
C
,
Amrein
MA
,
Ochsenbein
AF
.
Cytotoxic T cells induce proliferation of chronic myeloid leukemia stem cells by secreting interferon-gamma
.
J Exp Med
.
2013
;
210
(
3
):
605
-
621
.
71.
Xie
X
,
Zhang
W
,
Zhou
X
, et al
.
Low doses of IFN-γ maintain self-renewal of leukemia stem cells in acute myeloid leukemia
.
Oncogene
.
2023
;
42
(
50
):
3657
-
3669
.
72.
Fischer
M
,
Bijman
M
,
Molin
D
, et al
.
Increased serum levels of interleukin-9 correlate to negative prognostic factors in Hodgkin's lymphoma
.
Leukemia
.
2003
;
17
(
12
):
2513
-
2516
.
73.
Patrussi
L
,
Capitani
N
,
Baldari
CT
.
Interleukin (IL)-9 supports the tumor-promoting environment of chronic lymphocytic leukemia
.
Cancers (Basel)
.
2021
;
13
(
24
):
6301
.
74.
Chen
N
,
Lu
K
,
Li
P
,
Lv
X
,
Wang
X
.
Overexpression of IL-9 induced by STAT6 activation promotes the pathogenesis of chronic lymphocytic leukemia
.
Int J Clin Exp Pathol
.
2014
;
7
(
5
):
2319
-
2323
.
You do not currently have access to this content.
Sign in via your Institution