• Human-specific lncRNA GATA2AS is a regulator of erythroid differentiation.

  • GATA2AS is a novel GATA2 and HBG activator through distinct mechanisms.

Abstract

Long noncoding RNAs (lncRNAs) are extensively expressed in eukaryotic cells and have been revealed to be important for regulating cell differentiation. Many lncRNAs have been found to regulate erythroid differentiation in the mouse. However, given the low sequence conservation of lncRNAs between mouse and human, our understanding of lncRNAs in human erythroid differentiation remains incomplete. lncRNAs are often transcribed opposite to protein coding genes and regulate their expression. Here, we characterized a human erythrocyte-expressed lncRNA, GATA2AS, which is transcribed opposite to erythroid transcription regulator GATA2. GATA2AS is a 2080-bp long, primarily nucleus-localized noncoding RNA that is expressed in erythroid progenitor cells and decreases during differentiation. Knockout of GATA2AS in human HUDEP2 erythroid progenitor cells using CRISPR-Cas9 genome editing to remove the transcription start site accelerated erythroid differentiation and dysregulated erythroblast gene expression. We identified GATA2AS as a novel GATA2 and HBG activator. Chromatin isolation by RNA purification showed that GATA2AS binds to thousands of genomic sites and colocalizes at a subset of sites with erythroid transcription factors including LRF and KLF1. RNA pulldown and RNA immunoprecipitation confirmed interaction between GATA2AS and LRF and KLF1. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that knockout of GATA2AS reduces binding of these transcription factors genome wide. Assay for transposase-accessible chromatin sequencing (ATAC-seq) and H3K27ac ChIP-seq showed that GATA2AS is essential to maintain the chromatin regulatory landscape during erythroid differentiation. Knockdown of GATA2AS in human primary CD34+ cells mimicked results in HUDEP2 cells. Overall, our results implicate human-specific lncRNA GATA2AS as a regulator of erythroid differentiation by influencing erythroid transcription factor binding and the chromatin regulatory landscape.

1.
Djebali
S
,
Davis
CA
,
Merkel
A
, et al
.
Landscape of transcription in human cells
.
Nature
.
2012
;
489
(
7414
):
101
-
108
.
2.
Hon
CC
,
Ramilowski
JA
,
Harshbarger
J
, et al
.
An atlas of human long non-coding RNAs with accurate 5' ends
.
Nature
.
2017
;
543
(
7644
):
199
-
204
.
3.
Iyer
MK
,
Niknafs
YS
,
Malik
R
, et al
.
The landscape of long noncoding RNAs in the human transcriptome
.
Nat Genet
.
2015
;
47
(
3
):
199
-
208
.
4.
Sigova
AA
,
Mullen
AC
,
Molinie
B
, et al
.
Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
8
):
2876
-
2881
.
5.
Batista
PJ
,
Chang
HY
.
Long noncoding RNAs: cellular address codes in development and disease
.
Cell
.
2013
;
152
(
6
):
1298
-
1307
.
6.
Herman
AB
,
Tsitsipatis
D
,
Gorospe
M
.
Review integrated lncRNA function upon genomic and epigenomic regulation
.
Mol Cell
.
2022
;
82
(
12
):
2252
-
2266
.
7.
Hung
T
,
Wang
Y
,
Lin
MF
, et al
.
Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters
.
Nat Genet
.
2011
;
43
(
7
):
621
-
629
.
8.
Mele
M
,
Ferreira
PG
,
Reverter
F
, et al
.
Human genomics. the human transcriptome across tissues and individuals
.
Science
.
2015
;
348
(
6235
):
660
-
665
.
9.
Flynn
RA
,
Chang
HY
.
Long noncoding RNAs in cell-fate programming and reprogramming
.
Cell Stem Cell
.
2014
;
14
(
6
):
752
-
761
.
10.
Orkin
SH
,
Zon
LI
.
Hematopoiesis: an evolving paradigm for stem cell biology
.
Cell
.
2008
;
132
(
4
):
631
-
644
.
11.
Alvarez-Dominguez
JR
,
Lodish
HF
.
Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis
.
Blood
.
2017
;
130
(
18
):
1965
-
1975
.
12.
Alvarez-Dominguez
JR
,
Hu
W
,
Yuan
B
, et al
.
Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation
.
Blood
.
2014
;
123
(
4
):
570
-
581
.
13.
Paralkar
VR
,
Mishra
T
,
Luan
J
, et al
.
Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development
.
Blood
.
2014
;
123
(
12
):
1927
-
1937
.
14.
Oh
JH
,
Yang
JO
,
Hahn
Y
, et al
.
Transcriptome analysis of human gastric cancer
.
Mamm Genome
.
2005
;
16
(
12
):
942
-
954
.
15.
Zhang
L
,
Gao
L
,
Shao
M
,
Sun
GY
.
A MYC target long non-coding RNA GATA2-AS1 regulates non-small cell lung cancer growth
.
Neoplasma
.
2019
;
66
(
6
):
954
-
962
.
16.
Pan
YL
,
Zhu
YX
,
Zhang
J
,
Jin
L
,
Cao
PG
.
A feedback loop between GATA2-AS1 and GATA2 promotes colorectal cancer cell proliferation, invasion, epithelial-mesenchymal transition and stemness via recruiting DDX3X
.
J Transl Med
.
2022
;
20
(
1
):
287
.
17.
Singh
P
,
Heer
M
,
Resteu
A
, et al
.
GATA2 deficiency phenotype associated with tandem duplication of GATA2 and overexpression of GATA2-AS1
.
Blood Adv
.
2021
;
5
(
24
):
5631
-
5635
.
18.
Vinjamur
DS
,
Bauer
DE
.
Growing and genetically manipulating human umbilical cord blood-derived erythroid progenitor (HUDEP) cell lines
.
Methods Mol Biol
.
2018
;
1698
:
275
-
284
.
19.
Maeda
T
.
Regulation of hematopoietic development by ZBTB transcription factors
.
Int J Hematol
.
2016
;
104
(
3
):
310
-
323
.
20.
Gnanapragasam
MN
,
Bieker
JJ
.
Orchestration of late events in erythropoiesis by KLF1/EKLF
.
Curr Opin Hematol
.
2017
;
24
(
3
):
183
-
190
.
21.
Maamar
H
,
Cabili
MN
,
Rinn
J
,
Raj
A
.
linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis
.
Genes Dev
.
2013
;
27
(
11
):
1260
-
1271
.
22.
Rinn
JL
,
Kertesz
M
,
Wang
JK
, et al
.
Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
.
Cell
.
2007
;
129
(
7
):
1311
-
1323
.
23.
Chu
C
,
Quinn
J
,
Chang
HY
.
Chromatin isolation by RNA purification (ChIRP)
.
J Vis Exp
.
2012
(
61
):
3912
.
24.
Schmidl
C
,
Rendeiro
AF
,
Sheffield
NC
,
Bock
C
.
ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors
.
Nat Methods
.
2015
;
12
(
10
):
963
-
965
.
25.
Corces
MR
,
Trevino
AE
,
Hamilton
EG
, et al
.
An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues
.
Nat Methods
.
2017
;
14
(
10
):
959
-
962
.
26.
Wang
L
,
Park
HJ
,
Dasari
S
,
Wang
S
,
Kocher
JP
,
Li
W
.
CPAT: coding-potential assessment tool using an alignment-free logistic regression model
.
Nucleic Acids Res
.
2013
;
41
(
6
):
e74
.
27.
Snow
JW
,
Trowbridge
JJ
,
Fujiwara
T
, et al
.
A single cis element maintains repression of the key developmental regulator Gata2
.
PLoS Genet
.
2010
;
6
(
9
):
e1001103
.
28.
Snow
JW
,
Trowbridge
JJ
,
Johnson
KD
, et al
.
Context-dependent function of "GATA switch" sites in vivo
.
Blood
.
2011
;
117
(
18
):
4769
-
4772
.
29.
Sankaran
VG
,
Menne
TF
,
Xu
J
, et al
.
Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A
.
Science
.
2008
;
322
(
5909
):
1839
-
1842
.
30.
Masuda
T
,
Wang
X
,
Maeda
M
, et al
.
Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin
.
Science
.
2016
;
351
(
6270
):
285
-
289
.
31.
Xu
J
,
Sankaran
VG
,
Ni
M
, et al
.
Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6
.
Genes Dev
.
2010
;
24
(
8
):
783
-
798
.
32.
Guo
X
,
Plank-Bazinet
J
,
Krivega
I
,
Dale
RK
,
Dean
A
.
Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization
.
Nucleic Acids Res
.
2020
;
48
(
18
):
10226
-
10240
.
33.
Cheng
L
,
Li
YC
,
Qi
Q
, et al
.
Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression
.
Nat Genet
.
2021
;
53
(
6
):
869
-
880
.
34.
Liu
N
,
Hargreaves
VV
,
Zhu
Q
, et al
.
Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch
.
Cell
.
2018
;
173
(
2
):
430
-
442.e17
.
35.
McLean
CY
,
Bristor
D
,
Hiller
M
, et al
.
GREAT improves functional interpretation of cis-regulatory regions
.
Nat Biotechnol
.
2010
;
28
(
5
):
495
-
501
.
36.
Norton
LJ
,
Funnell
APW
,
Burdach
J
, et al
.
KLF1 directly activates expression of the novel fetal globin repressor ZBTB7A/LRF in erythroid cells
.
Blood Adv
.
2017
;
1
(
11
):
685
-
692
.
37.
Merika
M
,
Orkin
SH
.
Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF
.
Mol Cell Biol
.
1995
;
15
(
5
):
2437
-
2447
.
38.
Lee
J
,
Krivega
I
,
Dale
RK
,
Dean
A
.
The LDB1 complex co-opts CTCF for erythroid lineage-specific long-range enhancer interactions
.
Cell Rep
.
2017
;
19
(
12
):
2490
-
2502
.
39.
Mitchell
JA
,
Aronson
AR
,
Mork
JG
,
Folk
LC
,
Humphrey
SM
,
Ward
JM
.
Gene indexing: characterization and analysis of NLM's GeneRIFs
.
AMIA Annu Symp Proc
.
2003
;
2003
:
460
-
464
.
40.
Santos
A
,
Tsafou
K
,
Stolte
C
,
Pletscher-Frankild
S
,
O'Donoghue
SI
,
Jensen
LJ
.
Comprehensive comparison of large-scale tissue expression datasets
.
PeerJ
.
2015
;
3
:
e1054
.
41.
Shan
Y
,
Cortopassi
G
.
Mitochondrial Hspa9/Mortalin regulates erythroid differentiation via iron-sulfur cluster assembly
.
Mitochondrion
.
2016
;
26
:
94
-
103
.
42.
Li
D
,
Zhao
XY
,
Zhou
S
,
Hu
Q
,
Wu
F
,
Lee
HY
.
Multidimensional profiling reveals GATA1-modulated stage-specific chromatin states and functional associations during human erythropoiesis
.
Nucleic Acids Res
.
2023
;
51
(
13
):
6634
-
6653
.
43.
Weintraub
AS
,
Li
CH
,
Zamudio
AV
, et al
.
YY1 is a structural regulator of enhancer-promoter loops
.
Cell
.
2017
;
171
(
7
):
1573
-
1588.e28
.
44.
Mansour
MR
,
Abraham
BJ
,
Anders
L
, et al
.
An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element
.
Science
.
2014
;
346
(
6215
):
1373
-
1377
.
45.
Bresnick
EH
,
Katsumura
KR
,
Lee
HY
,
Johnson
KD
,
Perkins
AS
.
Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies
.
Nucleic Acids Res
.
2012
;
40
(
13
):
5819
-
5831
.
46.
Romano
O
,
Petiti
L
,
Felix
T
, et al
.
GATA factor-mediated gene regulation in human erythropoiesis
.
iScience
.
2020
;
23
(
4
):
101018
.
47.
Uchida
N
,
Demirci
S
,
Haro-Mora
JJ
, et al
.
Serum-free erythroid differentiation for efficient genetic modification and high-level adult hemoglobin production
.
Mol Ther Methods Clin Dev
.
2018
;
9
:
247
-
256
.
You do not currently have access to this content.
Sign in via your Institution