• The palmitoyltransferase ZDHHC21 is the key factor that regulates OXPHOS hyperactivity in AML cells as well as LSCs.

  • ZDHHC21 inhibition facilitates the therapeutic differentiation of AML cells and eradicates AML blasts in relapsed/refractory leukemia.

Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Nearly 50% of patients who receive the most intensive treatment inevitably experience disease relapse, likely resulting from the persistence of drug-resistant leukemia stem cells (LSCs). AML cells, especially LSCs, are highly dependent on mitochondrial oxidative phosphorylation (OXPHOS) for survival, but the mechanism involved in OXPHOS hyperactivity is unclear, and a noncytotoxic strategy to inhibit OXPHOS is lacking. To our knowledge, this study is the first to demonstrate that ZDHHC21 palmitoyltransferase serves as a key regulator of OXPHOS hyperactivity in AML cells. The depletion/inhibition of ZDHHC21 effectively induced myeloid differentiation and weakened stemness potential by inhibiting OXPHOS in AML cells. Interestingly, FMS-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD)–mutated AML cells expressed significantly higher levels of ZDHHC21 and exhibited better sensitivity to ZDHHC21 inhibition. Mechanistically, ZDHHC21 specifically catalyzed the palmitoylation of mitochondrial adenylate kinase 2 (AK2) and further activated OXPHOS in leukemic blasts. Inhibition of ZDHHC21 arrested the in vivo growth of AML cells and extended the survival of mice inoculated with AML cell lines and patient derived xenograft AML blasts. Moreover, targeting ZDHHC21 to suppress OXPHOS markedly eradicated AML blasts and enhanced chemotherapy efficacy in relapsed/refractory leukemia. Together, these findings not only uncover a new biological function of palmitoyltransferase ZDHHC21 in regulating AML OXPHOS but also indicate that ZDHHC21 inhibition is a promising therapeutic regimen for patients with AML, especially relapsed/refractory leukemia.

1.
Khwaja
A
,
Bjorkholm
M
,
Gale
RE
, et al
.
Acute myeloid leukaemia
.
Nat Rev Dis Primers
.
2016
;
2
:
16010
.
2.
Davis
AG
,
Johnson
DT
,
Zheng
DH
, et al
.
Alternative polyadenylation dysregulation contributes to the differentiation block of acute myeloid leukemia
.
Blood
.
2022
;
139
(
3
):
424
-
438
.
3.
Heuser
M
,
Yun
H
,
Berg
T
, et al
.
Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex
.
Cancer Cell
.
2011
;
20
(
1
):
39
-
52
.
4.
Dohner
H
,
Weisdorf
DJ
,
Bloomfield
CD
.
Acute myeloid leukemia
.
N Engl J Med
.
2015
;
373
(
12
):
1136
-
1152
.
5.
Skrtić
M
,
Sriskanthadevan
S
,
Jhas
B
, et al
.
Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia
.
Cancer Cell
.
2011
;
20
(
5
):
674
-
688
.
6.
Lagadinou
ED
,
Sach
A
,
Callahan
K
, et al
.
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
.
Cell Stem Cell
.
2013
;
12
(
3
):
329
-
341
.
7.
Aroua
N
,
Boet
E
,
Ghisi
M
, et al
.
Extracellular ATP and CD39 activate cAMP-mediated mitochondrial stress response to promote cytarabine resistance in acute myeloid leukemia
.
Cancer Discov
.
2020
;
10
(
10
):
1544
-
1565
.
8.
Farge
T
,
Saland
E
,
de Toni
F
, et al
.
Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism
.
Cancer Discov
.
2017
;
7
(
7
):
716
-
735
.
9.
Molina
JR
,
Sun
YT
,
Protopopova
M
, et al
.
An inhibitor of oxidative phosphorylation exploits cancer vulnerability
.
Nat Med
.
2018
;
24
(
7
):
1036
-
1046
.
10.
Reed
GA
,
Schiller
GJ
,
Kambhampati
S
, et al
.
A phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia
.
Cancer Med
.
2016
;
5
(
11
):
3031
-
3040
.
11.
de Beauchamp
L
,
Himonas
E
,
Helgason
GV
.
Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia
.
Leukemia
.
2022
;
36
(
1
):
1
-
12
.
12.
Sun
TS
,
Liu
ZN
,
Yang
Q
.
The role of ubiquitination and deubiquitination in cancer metabolism
.
Mol Cancer
.
2020
;
19
(
1
):
146
.
13.
Chen
L
,
Liu
S
,
Tao
YG
.
Regulating tumor suppressor genes: post-translational modifications
.
Signal Transduct Target Ther
.
2020
;
5
(
1
):
90
.
14.
Li
W
,
Li
FF
,
Zhang
X
,
Lin
HK
,
Xu
C
.
Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment
.
Signal Transduct Target Ther
.
2021
;
6
(
1
):
422
.
15.
Cuiffo
B
,
Ren
R
.
Palmitoylation of oncogenic NRAS is essential for leukemogenesis
.
Blood
.
2010
;
115
(
17
):
3598
-
3605
.
16.
Runkle
KB
,
Kharbanda
A
,
Stypulkowski
E
, et al
.
Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling
.
Mol Cell
.
2016
;
62
(
3
):
385
-
396
.
17.
Chen
BE
,
Zheng
BH
,
DeRan
M
, et al
.
ZDHHC7-mediated S-palmitoylation of Scribble regulates cell polarity
.
Nat Chem Biol
.
2016
;
12
(
9
):
686
-
693
.
18.
Jiang
H
,
Zhang
XY
,
Chen
X
,
Aramsangtienchai
P
,
Tong
Z
,
Lin
HN
.
Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies
.
Chem Rev
.
2018
;
118
(
3
):
919
-
988
.
19.
Linder
ME
,
Jennings
BC
.
Mechanism and function of DHHC S-acyltransferases
.
Biochem Soc Trans
.
2013
;
41
(
1
):
29
-
34
.
20.
Ko
PJ
,
Dixon
SJ
.
Protein palmitoylation and cancer
.
EMBO Rep
.
2018
;
19
(
10
):
e46666
.
21.
Ducker
CE
,
Stettler
EM
,
French
KJ
,
Upson
JJ
,
Smith
CD
.
Huntingtin interacting protein 14 is an oncogenic human protein: palmitoyl acyltransferase
.
Oncogene
.
2004
;
23
(
57
):
9230
-
9237
.
22.
Shao
X
,
Liu
Y
,
Li
Y
, et al
.
The HER2 inhibitor TAK165 sensitizes human acute myeloid leukemia cells to retinoic acid-induced myeloid differentiation by activating MEK/ERK mediated RARalpha/STAT1 axis
.
Sci Rep
.
2016
;
6
:
24589
.
23.
Ying
M
,
Shao
X
,
Jing
H
, et al
.
Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2
.
Blood
.
2018
;
131
(
24
):
2698
-
2711
.
24.
Yuan
M
,
Chen
XB
,
Sun
YT
, et al
.
ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression
.
Acta Pharm Sin B
.
2020
;
10
(
8
):
1426
-
1439
.
25.
Shao
XJ
,
Chen
YQ
,
Xu
AX
, et al
.
Deneddylation of PML/RAR alpha reconstructs functional PML nuclear bodies via orchestrating phase separation to eradicate APL.
.
Cell Death Differ
.
2022
;
29
(
8
):
1654
-
1668
.
26.
Shao
XJ
,
Xiang
SF
,
Fu
HR
, et al
.
CDK2 suppression synergizes with all-trans-retinoic acid to overcome the myeloid differentiation blockade of AML cells
.
Pharmacol Res
.
2020
;
151
:
104545
.
27.
Cheung
AM
,
Wan
TS
,
Leung
JC
, et al
.
Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential
.
Leukemia
.
2007
;
21
(
7
):
1423
-
1430
.
28.
Gill
S
,
Tasian
SK
,
Ruella
M
, et al
.
Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells
.
Blood
.
2014
;
123
(
15
):
2343
-
2354
.
29.
Kim
JA
,
Shim
JS
,
Lee
GY
, et al
.
Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia
.
Cancer Res
.
2015
;
75
(
11
):
2222
-
2231
.
30.
Ng
SW
,
Mitchell
A
,
Kennedy
JA
, et al
.
A 17-gene stemness score for rapid determination of risk in acute leukaemia
.
Nature
.
2016
;
540
(
7633
):
433
-
437
.
31.
Raffel
S
,
Klimmeck
D
,
Falcone
M
, et al
.
Quantitative proteomics reveals specific metabolic features of acute myeloid leukemia stem cells
.
Blood
.
2020
;
136
(
13
):
1507
-
1519
.
32.
Puurand
M
,
Tepp
K
,
Klepinin
A
,
Klepinina
L
,
Shevchuk
I
,
Kaambre
T
.
Intracellular energy-transfer networks and high-resolution respirometry: a convenient approach for studying their function
.
Int J Mol Sci
.
2018
;
19
(
10
):
2933
.
33.
Six
E
,
Lagresle-Peyrou
C
,
Susini
S
, et al
.
AK2 deficiency compromises the mitochondrial energy metabolism required for differentiation of human neutrophil and lymphoid lineages
.
Cell Death Dis
.
2015
;
6
(
8
):
e1856
.
34.
Pollyea
DA
,
Stevens
BM
,
Jones
CL
, et al
.
Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia
.
Nat Med
.
2018
;
24
(
12
):
1859
-
1866
.
35.
Baccelli
I
,
Gareau
Y
,
Lehnertz
B
, et al
.
Mubritinib targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia
.
Cancer Cell
.
2019
;
36
(
1
):
84
-
99.e8
.
36.
Amaya
ML
,
Inguva
A
,
Pei
SS
, et al
.
The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation
.
Blood
.
2022
;
139
(
4
):
584
-
596
.
37.
Rossin
A
,
Durivault
J
,
Chakhtoura-Feghali
T
,
Lounnas
N
,
Gagnoux-Palacios
L
,
Hueber
AO
.
Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability
.
Cell Death Differ
.
2015
;
22
(
4
):
643
-
653
.
38.
Zhang
MM
,
Zhou
LX
,
Xu
YJ
, et al
.
A STAT3 palmitoylation cycle promotes T(H)17 differentiation and colitis
.
Nature
.
2020
;
586
(
7829
):
434
-
439
.
39.
Li
WQ
,
Li
WN
,
Zou
LH
, et al
.
Membrane targeting of inhibitory Smads through palmitoylation controls TGF-beta/BMP signaling
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
50
):
13206
-
13211
.
40.
Yang
Y
,
Hsu
JM
,
Sun
LL
, et al
.
Palmitoylation stabilizes PD-L1 to promote breast tumor growth
.
Cell Res
.
2019
;
29
(
1
):
83
-
86
.
41.
Yao
H
,
Lan
J
,
Li
CS
, et al
.
Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours [published correction appears in Nat Biomed Eng. 2019;3(5):414]
.
Nat Biomed Eng
.
2019
;
3
(
4
):
306
-
317
.
42.
Frohlich
M
,
Dejanovic
B
,
Kashkar
H
,
Schwarz
G
,
Nussberger
S
.
S-palmitoylation represents a novel mechanism regulating the mitochondrial targeting of BAX and initiation of apoptosis
.
Cell Death Dis
.
2014
;
5
(
2
):
e1057
.
43.
Napoli
E
,
Song
G
,
Liu
SM
, et al
.
Zdhhc13-dependent Drp1 S-palmitoylation impacts brain bioenergetics, anxiety, coordination and motor skills
.
Sci Rep
.
2017
;
7
(
1
):
12796
.
44.
Takubo
K
,
Nagamatsu
G
,
Kobayashi
CI
, et al
.
Regulation of glycolysis by pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
.
Cell Stem Cell
.
2013
;
12
(
1
):
49
-
61
.
45.
Suda
T
,
Takubo
K
,
Semenza
GL
.
Metabolic regulation of hematopoietic stem cells in the hypoxic niche
.
Cell Stem Cell
.
2011
;
9
(
4
):
298
-
310
.
46.
Shyh-Chang
N
,
Daley
GQ
,
Cantley
LC
.
Stem cell metabolism in tissue development and aging
.
Development
.
2013
;
140
(
12
):
2535
-
2547
.
47.
Ito
K
,
Suda
T
.
Metabolic requirements for the maintenance of self-renewing stem cells
.
Nat Rev Mol Cell Biol
.
2014
;
15
(
4
):
243
-
256
.
48.
Inoue
SI
,
Noda
S
,
Kashima
K
,
Nakada
K
,
Hayashi
JI
,
Miyoshi
H
.
Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells
.
FEBS Lett
.
2010
;
584
(
15
):
3402
-
3409
.
49.
Lu
Y
,
Yan
JS
,
Xia
L
, et al
.
2-Bromopalmitate targets retinoic acid receptor alpha and overcomes all-trans retinoic acid resistance of acute promyelocytic leukemia
.
Haematologica
.
2019
;
104
(
1
):
102
-
112
.
50.
Ersöz
,
Adan
A
.
Differential in vitro anti-leukemic activity of resveratrol combined with serine palmitoyltransferase inhibitor myriocin in FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) carrying AML cells
.
Cytotechnology
.
2022
;
74
(
2
):
271
-
281
.
51.
Liu
P
,
Jiao
B
,
Zhang
R
, et al
.
Palmitoylacyltransferase Zdhhc9 inactivation mitigates leukemogenic potential of oncogenic Nras
.
Leukemia
.
2016
;
30
(
5
):
1225
-
1228
.
52.
Yu
L
,
Reader
JC
,
Chen
C
, et al
.
Activation of a novel palmitoyltransferase ZDHHC14 in acute biphenotypic leukemia and subsets of acute myeloid leukemia
.
Leukemia
.
2011
;
25
(
2
):
367
-
371
.
53.
Li
Y
,
Martin
BR
,
Cravatt
BF
,
Hofmann
SL
.
DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells
.
J Biol Chem
.
2012
;
287
(
1
):
523
-
530
.
54.
Wang
F
,
Chen
XR
,
Shi
W
, et al
.
Zdhhc15b regulates differentiation of diencephalic dopaminergic neurons in zebrafish
.
J Cell Biochem
.
2015
;
116
(
12
):
2980
-
2991
.
You do not currently have access to this content.
Sign in via your Institution