TO THE EDITOR:

Despite dramatic improvements in survival, multiple myeloma (MM) remains largely incurable, and most patients develop disease that is refractory to available treatment options.1  Use of chimeric antigen receptor T-cell therapy (CART) is a novel approach that is associated with impressive outcomes in heavily pretreated patients. Given the rapid evolution of this treatment paradigm, we assessed the efficacy and toxicity of CART for MM utilizing the most up-to-date results.

Four databases were searched (Web of Science/MEDLINE/PubMed, Embase, and Cochrane Registry of Controlled Trials). An example search strategy is shown in supplemental Table 1. Two independent reviewers (G.R.M., A.R.) screened all studies, and conflict was resolved through mutual discussion. This review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses recommendations.2 

Our search strategy was restricted to include all prospective trials exclusively enrolling ≥2 patients with MM that were published in manuscript or presented in abstract form from 1 January 2013 through 15 November 2020. Furthermore, all abstracts that were presented live at the 62nd American Society of Hematology Annual Meeting were included with most updated information. All other studies, including editorials, case reports, case series, and review articles, were excluded.

The primary outcomes were the pooled response rate for all MM CART, pooled rate of grade 3/4 cytokine release syndrome (CRS), and pooled immune effector cell–associated neurotoxicity syndrome (ICANS). Proportional outcomes were pooled using a random effects model, and the DerSimonian and Laird Method with a correction factor of 0.5 was used. Statistical software Open Meta-Analyst (Brown School of Public Health) was used for calculations. The I2 statistic was used to test for heterogeneity between the studies. The I2 of values of <30%, 30% to 60%, 61% to 75%, and >75% were suggestive of low, moderate, substantial, and considerable heterogeneity, respectively.3,4  Data were collected by 3 independent reviewers (G.R.M., A.R., and N.B.) and stored using Microsoft Excel. Variables collected include demographic information of participants, information on safety (ICANS, CRS), and efficacy outcomes (response rate, minimal residual disease data, duration of response, progression-free survival [PFS]).

A total of 30 clinical trials that met inclusion criteria was included (supplemental Figure 1). A total of 921 patients was evaluable for efficacy analysis, and 950 patients were available for safety analysis, as pertains to CRS. A total of 781 patients was available for safety analysis of ICANS. Table 1 lists the characteristics/outcomes of these studies. The median prior lines of therapy was 6, based on the 21 studies that reported that data, and 74.4% of patients were triple refractory, among the 5 studies that clearly reported that data.

Table 1.

Characteristics and outcomes of MM CART studies

StudyStudy nameYear of most recent reportTargetNo. patients (efficacy)Median prior lines, nGrade 3-4 CRS, %Grade 3-4 ICANS, %ORR, %MRD, %mDOR, moPFS, mo
Kochenderfer7  NR 2016 BCMA 12 NR NR NR 25 NR NR NR 
Ramos et al8  KCAR 2016 κ light chain 5.7 14.2 NR NR 
Guo et al9  NR 2016 CD 138 NR NR NR 20 NR NR NR 
Li et al10  NR 2018 BCMA 28 NR 14.3 NR 92.9 NR NR NR 
Mailankody et al11  (MCARH171) MCARH171 2018 BCMA 11 20 63.6 NR 3.5 NR 
Brudno et al12  NR 2018 BCMA 24 9.5 25 12.5 58.3 50 NR NR 
Green et al13  NR 2018 BCMA 100 NR NR NR 
Hu et al14  NR 2019 BCMA 33 NR 48.4 NR 96.9 97.9 NR 70.7% at 1 y 
Li et al15  (BM38) BM38 2019 BCMA 16 NR 25 87.5 87.5 NR NR 
Yan et al16  NR 2019 BCMA/CD19 21 4.8 NR 95.2 80.9 NR NR 
Garfall et al17  CTL119 2019 BCMA/CD19 10 3.6 90 50 NR NR 
Cohen et al18  CAR-BCMA 2019 BCMA 25 32 12 48 20 4.1 NR 
Wang et al19  LCAR-B38M 2019 BCMA 57 NR 87.7 68.4 22 20 
Fu et al20  NR 2019 BCMA 44 NR 79.5 36.3 NR 15 
Popat et al21  AUTO2 2019 BCMA, TACI 42.9 NR NR NR 
Cowan et al22  NR 2019 BCMA 10 85.7 71.4 NR NR 
Mikkilineni et al23  FHVH-BCMA-T 2019 BCMA 12 8.3 8.3 83.3 NR NR NR 
Li et al24  (CT103 a) CT103A 2020 BCMA 18 NR 39 100 NR NR NR 
Mailankody et al25  (Orva-Cel) Orva-cel 2020 BCMA 62 1.6 3.2 91.93 NR NR NR 
Lin et al26  (bb2121) bb2121 2020 BCMA 62 NR 6.5 3.2 75.8 48.4 18.1 8.8 
Alsina et al27  BB21217 2020 BCMA 59 4.3 4.3 67.8 NR NR 
San Miguel et al28  Ide-Cel 2020 BCMA 128 5.5 3.1 72.7 NR 10.6 8.6 
Han et al29  NR 2020 BCMA 34 10 2.9 NR 88.2 NR NR NR 
Hao et al30  CT053 2020 BCMA 24 4.5 4.2 87.5 70.8 21.8 18.8 
Costello et al31  p-BCMA-101 2020 BCMA 30 3.6 66.7 NR NR NR 
Madduri et al32  Cilta-cel 2020 BCMA 97 4.1 10.3 96.9 50.5 NR NR 
Mailankody et al33  (ALLO-715/ALLO-647) ALLO-715/ALLO-647 2020 BCMA 26 65.4 NR NR NR 
Kumar et al34  CT053 2020 BCMA 18 94.4 61.1 NR NR 
Jiang et al35  GC012F 2020 BCMA/CD19 16 11.2 93.8 68.8 NR NR 
An et al36  C-CAR088 2020 BCMA 21 4.7 95.2 NR NR NR 
StudyStudy nameYear of most recent reportTargetNo. patients (efficacy)Median prior lines, nGrade 3-4 CRS, %Grade 3-4 ICANS, %ORR, %MRD, %mDOR, moPFS, mo
Kochenderfer7  NR 2016 BCMA 12 NR NR NR 25 NR NR NR 
Ramos et al8  KCAR 2016 κ light chain 5.7 14.2 NR NR 
Guo et al9  NR 2016 CD 138 NR NR NR 20 NR NR NR 
Li et al10  NR 2018 BCMA 28 NR 14.3 NR 92.9 NR NR NR 
Mailankody et al11  (MCARH171) MCARH171 2018 BCMA 11 20 63.6 NR 3.5 NR 
Brudno et al12  NR 2018 BCMA 24 9.5 25 12.5 58.3 50 NR NR 
Green et al13  NR 2018 BCMA 100 NR NR NR 
Hu et al14  NR 2019 BCMA 33 NR 48.4 NR 96.9 97.9 NR 70.7% at 1 y 
Li et al15  (BM38) BM38 2019 BCMA 16 NR 25 87.5 87.5 NR NR 
Yan et al16  NR 2019 BCMA/CD19 21 4.8 NR 95.2 80.9 NR NR 
Garfall et al17  CTL119 2019 BCMA/CD19 10 3.6 90 50 NR NR 
Cohen et al18  CAR-BCMA 2019 BCMA 25 32 12 48 20 4.1 NR 
Wang et al19  LCAR-B38M 2019 BCMA 57 NR 87.7 68.4 22 20 
Fu et al20  NR 2019 BCMA 44 NR 79.5 36.3 NR 15 
Popat et al21  AUTO2 2019 BCMA, TACI 42.9 NR NR NR 
Cowan et al22  NR 2019 BCMA 10 85.7 71.4 NR NR 
Mikkilineni et al23  FHVH-BCMA-T 2019 BCMA 12 8.3 8.3 83.3 NR NR NR 
Li et al24  (CT103 a) CT103A 2020 BCMA 18 NR 39 100 NR NR NR 
Mailankody et al25  (Orva-Cel) Orva-cel 2020 BCMA 62 1.6 3.2 91.93 NR NR NR 
Lin et al26  (bb2121) bb2121 2020 BCMA 62 NR 6.5 3.2 75.8 48.4 18.1 8.8 
Alsina et al27  BB21217 2020 BCMA 59 4.3 4.3 67.8 NR NR 
San Miguel et al28  Ide-Cel 2020 BCMA 128 5.5 3.1 72.7 NR 10.6 8.6 
Han et al29  NR 2020 BCMA 34 10 2.9 NR 88.2 NR NR NR 
Hao et al30  CT053 2020 BCMA 24 4.5 4.2 87.5 70.8 21.8 18.8 
Costello et al31  p-BCMA-101 2020 BCMA 30 3.6 66.7 NR NR NR 
Madduri et al32  Cilta-cel 2020 BCMA 97 4.1 10.3 96.9 50.5 NR NR 
Mailankody et al33  (ALLO-715/ALLO-647) ALLO-715/ALLO-647 2020 BCMA 26 65.4 NR NR NR 
Kumar et al34  CT053 2020 BCMA 18 94.4 61.1 NR NR 
Jiang et al35  GC012F 2020 BCMA/CD19 16 11.2 93.8 68.8 NR NR 
An et al36  C-CAR088 2020 BCMA 21 4.7 95.2 NR NR NR 

mDOR, median duration of response; MRD, minimal residual disease; NR, not reported; ORR, overall response rate.

The pooled response rate was 78.3% (95% confidence interval [CI], 72.3-84.3; I2, 88.9) (Figure 1). The pooled grade 3/4 or higher CRS rate was 6.4% (95% CI, 4.1-8.8; I2, 62.6) (supplemental Figure 2), and the pooled grade 3/4 ICANS rate was 3.5% (95% CI, 2.2-4.9; I2, 0) (supplemental Figure 3). The risk of bias is reported in supplemental Table 2.

Figure 1.

Pooled response rate for chimeric antigen receptor therapies in MM.

Figure 1.

Pooled response rate for chimeric antigen receptor therapies in MM.

Close modal

Because the vast majority of studies used BCMA as the sole target, a subgroup analysis of efficacy was done exclusively for BCMA CART. The pooled response rate for these 24 studies was 81.9% (95% CI, 76.6-87.7; I2, 84.0). A total of 13 studies had a median prior lines of treatment ≥ 6. In these studies, the pooled response rate was 79.6% (95% CI, 71.3-87.9; I2, 88.6%).

Our study is the most current and comprehensive meta-analysis of CART therapies in MM, with 950 patients included. With a pooled response rate of 78% in heavily pretreated patients, these results are promising. Progression-free survival (PFS) has not been reported for the majority of studies as a result of the short duration of follow-up or it was inconsistently reported for different dosing strategies or for different end points (eg, 9-month PFS, 6-month PFS), precluding a quantitative synthesis. When reported, the median PFS ranged from 8 to 20 months, which is significantly greater than currently available treatments for this patient population. The use of allogeneic products that are currently being evaluated, such as ALLO-715/ALLO-647, as well as products that are easily administered in an outpatient setting (p-BCMA-101), may allow these treatments to reach a wider population. Although the vast majority of constructs have targeted BCMA, other targets under consideration include NKG2D, SLAMF7, and CD229.5 

Our analysis has several limitations. We used per-protocol analysis, as reported by the individual studies; hence, patients who progress while awaiting products are excluded from analysis. Thus, our response rate likely overestimates the intention-to-treat response rate, should these products be used off-protocol in a broader population. Conversely, we analyzed all doses used in dose-escalation studies, and it is possible that the use of higher doses in subsequent studies leads to higher response rates. It also must be noted that different manufacturing protocols can be used within a study, leading to different response rates and heterogeneity within a study. Because of the limited number of studies having a sufficiently long follow-up to report on median duration of follow-up or a median PFS, a composite outcome was not computed for those variables. The I2 statistic in our study indicates significant heterogeneity for efficacy outcomes, likely owing to the inclusion of several studies with small sample sizes and variability in observed efficacy.

In summary, CART for MM appears to be a promising therapy with a high response rate and comparatively low rates of toxicity compared with CD19-targeted therapy.6  Its use in earlier lines in less pretreated populations, as well as newer constructs with more durable responses, is expected to further improve efficacy.

Data sharing requests should be sent to Ghulam Rehman Mohyuddin (rehmanm@gmail.com).

The authors thank Lee Wades for assistance with the literature search.

Contribution: G.R.M. conceived the study, performed statistics, and wrote the manuscript; A.R. and N.B. assisted with the literature search and data collection and revised the manuscript; M.A. conceived the search strategy and cross-checked the statistical calculations; and B.M., D.W.S., and S.K.K. provided critical input and extensively revised the manuscript; and all authors approved the final version of the manuscript.

Conflict-of-interest disclosure: D.W.S. has acted as a consultant for Janssen Pharmaceuticals, SkylinDx, GlaxoSmithKline, Legend Biotech, Amgen, and Celgene. S.K.K. has received institutional research funding for clinical trials from Celgene, Takeda, Janssen Pharmaceuticals, Bristol Myers Squibb, KITE, Merck, AbbVie, Medimmune, Novartis, Roche-Genentech, Amgen, TeneoBio, and CARsgen Therapeutics; has acted as a consultant for and/or served on Advisory Boards (with no personal payment) for Celgene, Takeda, Janssen Pharmaceuticals, AbbVie, Genentech, Amgen, and Molecular Partner; and has acted as a consultant for and/or served on Advisory Boards (with personal payment) for Oncopeptides, GeneCentrix, and Cellectar. The remaining authors declare no competing financial interests.

Correspondence: Ghulam Rehman Mohyuddin, Kansas University Medical Center, 2350 Shawnee Mission Parkway, Westwood, KS 66160; e-mail: rehmanm@gmail.com.

1.
Rajkumar
SV
.
Multiple myeloma: 2020 update on diagnosis, risk-stratification and management [published correction appears in Am J Hematol. 2020;95(11):1444]
.
Am J Hematol
.
2020
;
95
(
5
):
548
-
567
.
2.
Moher
D
,
Liberati
A
,
Tetzlaff
J
,
Altman
DG
;
PRISMA Group
.
Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
.
PLoS Med
.
2009
;
6
(
7
):
e1000097
.
3.
Shuster
JJ
.
Review: Cochrane handbook for systematic reviews for interventions, Version 5.1.0, published 3/2011. Julian P.T. Higgins and Sally Green, Editors
.
Res Synthesis Methods
.
2011
;
2
(
2
):
126
-
130
.
4.
Higgins
JP
,
Thompson
SG
,
Deeks
JJ
,
Altman
DG
.
Measuring inconsistency in meta-analyses
.
BMJ
.
2003
;
327
(
7414
):
557
-
560
.
5.
Atrash
S
,
Ali
SA
,
Usmani
SZ
.
Chimeric antigen receptor T-cell therapy for multiple myeloma
.
Clin Lymphoma Myeloma Leuk
.
2021
;
21
(
1
):
21
-
34
.
6.
Anagnostou
T
,
Riaz
IB
,
Hashmi
SK
,
Murad
MH
,
Kenderian
SS
.
Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis
.
Lancet Haematol
.
2020
;
7
(
11
):
e816
-
e826
.
7.
Kochenderfer
JN
.
Chimeric antigen receptors/genetically modified T-cells
.
Blood
.
2016
;
128
(
22
):
SCI
-
37
.
8.
Ramos
CA
,
Savoldo
B
,
Torrano
V
, et al
.
Clinical responses with T lymphocytes targeting malignancy-associated κ light chains
.
J Clin Invest
.
2016
;
126
(
7
):
2588
-
2596
.
9.
Guo
B
,
Chen
M
,
Han
Q
, et al
.
CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma
.
J Cell Immunother
.
2016
;
2
(
1
):
28
-
35
.
10.
Li
C
,
Wang
Q
,
Zhu
H
, et al
.
T cells expressing anti B-cell maturation antigen chimeric antigen receptors for plasma cell malignancies
.
Blood
.
2018
;
132
(
suppl 1
):
1013
.
11.
Mailankody
S
,
Ghosh
A
,
Staehr
M
, et al
.
Clinical responses and pharmacokinetics of MCARH171, a human-derived BCMA targeted CAR T cell therapy in relapsed/refractory multiple myeloma: final results of a phase 1 clinical trial
.
Blood
.
2018
;
132
(
suppl 1
):
959
.
12.
Brudno
JN
,
Maric
I
,
Hartman
SD
, et al
.
T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma
.
J Clin Oncol
.
2018
;
36
(
22
):
2267
-
2280
.
13.
Green
DJ
,
Pont
M
,
Duke Sather
B
, et al
.
Fully human BCMA targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma
.
Blood
.
2018
;
132
(
suppl 1
):
1011
.
14.
Hu
Y
,
Yanlei
Z
,
Wei
Q
,
Hong
CA
,
Huang
H
.
Potent anti-tumor activity of BCMA CAR-T therapy against heavily treated multiple myeloma and dynamics of immune cell subsets using single-cell mass cytometry
.
Blood
.
2019
;
134
(
suppl 1
):
1859
.
15.
Li
C
,
Mei
H
,
Hu
Y
, et al
.
A bispecific CAR-T cell therapy targeting BCMA and CD38 for relapsed/refractory multiple myeloma: updated results from a phase 1 dose-climbing trial
.
Blood
.
2019
;
134
(
suppl 1
):
930
.
16.
Yan
Z
,
Cao
J
,
Cheng
H
, et al
.
A combination of humanized anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial
.
Lancet Haematol
.
2019
;
6
(
10
):
e521
-
e529
.
17.
Garfall
AL
,
Cohen
AD
,
Lacey
SF
, et al
.
Combination anti-BCMA and anti-CD19 CAR T cells as consolidation of response to prior therapy in multiple myeloma
.
Blood
.
2019
;
134
(
suppl 1
):
1863
.
18.
Cohen
AD
,
Garfall
AL
,
Stadtmauer
EA
, et al
.
B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma
.
J Clin Invest
.
2019
;
129
(
6
):
2210
-
2221
.
19.
Wang
BY
,
Zhao
WH
,
Liu
J
, et al
.
Long-term follow-up of a phase 1, first-in-human open-label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (BCMA), in patients (pts) wi9th relapsed/refractory multiple myeloma (RRMM)
.
Blood
.
2019
;
134
(
suppl 1
):
579
.
20.
Fu
W
Sr
, Du
H
, Jiang
H, et al.
Efficacy and safety of CAR-T therapy with safety switch targeting BCMA for patients with relapsed/refractory multiple myeloma in a phase 1 clinical study
.
Blood
.
2019
;
134
(
suppl 1
):
3154
. .
21.
Popat
R
,
Zweegman
S
,
Cavet
J
, et al
.
Phase 1 first-in-human study of AUTO2, the first chimeric antigen receptor (CAR) T cell targeting APRIL for patients with relapsed/refractory multiple myeloma (RRMM)
.
Blood
.
2019
;
134
(
suppl 1
):
3112
.
22.
Cowan
AJ
,
Pont
M
,
Duke Sather
B
, et al
.
Efficacy and safety of fully human BCMA CAR T cells in combination with a gamma secretase inhibitor to increase BCMA surface expression in patients with relapsed or refractory multiple myeloma
.
Blood
.
2019
;
134
(
suppl 1
):
204
.
23.
Mikkilineni
L
,
Manasanch
EE
,
Lam
N
, et al
.
T cells expressing an anti-B-cell maturation antigen (BCMA) chimeric antigen receptor with a fully-human heavy-chain-only antigen recognition domain induce remissions in patients with relapsed multiple myeloma
.
Blood
.
2019
;
134
(
suppl 1
):
3230
.
24.
Li
C
,
Wang
J
,
Wang
D
, et al
A phase 1 study of CT103A, a fully human BCMA targeting CAR T cell, in subjects with relapsed/refractory multiple myeloma. Available at: https://library.ehaweb.org/eha/2020/eha25th/293963/chunrui.li.a.phase.1.study.of.ct103a.a.fully.human.bcma.targeting.car.t.cell.html. Accessed 5 December 2020.
25.
Mailankody
S
,
Jakubowiak
AJ
,
Htut
M
, et al
.
Orvacabtagene autoleucel (orva-cel), a B-cell naturation agent (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011)
.
J Clin Oncol
.
2020
;
38
(
suppl 15
):
8504
.
26.
Lin
Y
,
Raje
NS
,
Berdeja
JG
, et al
Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in patients with relapsed and refractory multiple myeloma: updated results from phase 1 CRB-401 study
[abstract]
.
Blood.
2020
;
136
(
suppl 1
).
Abstract 131
.
27.
Alsina
M
,
Shah
N
,
Raje
NS
, et al
Updated results from the phase 1 CRB-402 study of anti-BCMA CAR-T cell therapy bb21217 in patients with relapsed and refractory multiple myeloma: correlation of expansion and duration of response with T cell phenotypes
[abstract]
.
Blood.
2020
;
136
(
suppl 1
).
Abstract 130
.
28.
San Miguel
J
,
Shah
N
,
Oriol
A
, et al
Idecabtagene vicleucel (IDE-CEL; BB2121), a BCMA-targeted CAR T cell therapy in patients with relapsed and refractory multiple myeloma: initial KARMMA results. Available at: https://library.ehaweb.org/eha/2020/eha25th/295029/jesus.san.miguel.idecabtagene.vicleucel.28ide-cel.bb212129.a.bcma-targeted.car.t. Accessed 5 December 2020.
29.
Han
L
,
Gao
Q
,
Zhou
K
, et al
.
The clinical study of anti-BCMA CAR-T with humanized single-domain antibody
.
Cytotherapy
.
2020
;
22
:
S18
.
30.
Hao
S
,
Jin
J
,
Jiang
S.
et al
Two-year follow-up of investigator-initiated phase 1 trials of the safety and efficacy of fully human anti-Bcma CAR T Cells (CT053) in relapsed/refractory multiple myeloma
[abstract]
.
Blood.
2020
;
136
(
suppl 1
).
Abstract 132
.
31.
Costello
CL
,
Cohen
AD
,
Patel
KK
, et al
Phase 1/2 study of the safety and response of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (PRIME) with novel therapeutic strategies
[abstract]
.
Blood.
2020
;
136
(
suppl 1
).
Abstract 134
.
32.
Madduri
D
,
Berdeja
JG
,
Usmani
SZ
, et al
CARTITUDE-1: phase 1b/2 study of ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T cell therapy, in relapsed/refractory multiple myeloma
[abstract]
.
Blood.
2020
;
136
(
suppl 1
).
Abstract 177
.
33.
Mailankody
S
,
Matous
JV
,
Liedtke
M
et al
Universal: an allogeneic first-in-human study of the anti-Bcma ALLO-715 and the anti-CD52 ALLO-647 in relapsed/refractory multiple myeloma [abstract]. Blood.
2020
;136(suppl 1). Abstract 129.
34.
Kumar
SJ
,
Baz
RC
,
Orlowski
RZ
, et al
Results from Lummicar-2: a phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T cells (CT053) in patients with relapsed and/or refractory multiple myeloma
[abstract]
.
Blood.
2020
;
136
(
suppl 1
).
Abstract 133
.
35.
Jiang
H
,
Dong
B
,
Gao
L
, et al
Clinical results of a multicenter study of the first-in-human dual BCMA and CD19 targeted novel platform fast CAR-T cell therapy for patients with relapsed/refractory multiple myeloma
[abstract]
.
Blood.
2020
;
136
(
suppl 1
).
Abstract 178
.
36.
An
G
,
Sui
W
,
Wang
T
, et al
An anti-BCMA CAR T-cell therapy (C-CAR088) shows promising safety and efficacy profile in relapsed or refractory multiple myeloma
[abstract]
.
Blood.
2020
;
136
(
suppl 1
).
Abstract 182
.

Author notes

The full-text version of this article contains a data supplement.

Supplemental data