Abstract

TP53 mutations are found in 10% to 15% of myeloid neoplasms and are one of its most important prognostic factors. Emerging data show that TP53 mutational allele status is a key determinant of clinical outcomes, with multihit TP53 mutant myeloid neoplasms having a very poor prognosis. Significant differences exist among the methods used in clinical and research settings to assess TP53 mutational status, leading to variability in reported patient characteristics, response to therapy, and survival. Indeed, differences in the criteria used to define TP53 mutational states among professional societies and in landmark research studies have led to confusion, suboptimal clinical testing, and variability in therapy recommendations. We review the methods used to assess for TP53 mutational allele status and provide recommendations, based on clinically available testing, for the accurate evaluation of TP53 gene mutations in myeloid neoplasms. Hotspot mutations represent ∼35% of all TP53 missense mutations in myeloid neoplasms. There is evidence that these hotspot mutations may have dominant-negative or gain-of-function properties. Here, we review this evidence and discuss the potential impact of TP53 mutation identity on patient outcomes and clinical management.

1.
Tsai
CH
,
Hou
HA
,
Tang
JL
, et al
.
Genetic alterations and their clinical implications in older patients with acute myeloid leukemia
.
Leukemia
.
2016
;
30
(
7
):
1485
-
1492
.
2.
Stengel
A
,
Kern
W
,
Haferlach
T
,
Meggendorfer
M
,
Fasan
A
,
Haferlach
C
.
The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases
.
Leukemia
.
2017
;
31
(
3
):
705
-
711
.
3.
Pedersen-Bjergaard
J
,
Pedersen
M
,
Roulston
D
,
Philip
P
.
Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia
.
Blood
.
1995
;
86
(
9
):
3542
-
3552
.
4.
Grob
T
,
Al Hinai
ASA
,
Sanders
MA
, et al
.
Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome
.
Blood
.
2022
;
139
(
15
):
2347
-
2354
.
5.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al
.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
.
Nat Med
.
2020
;
26
(
10
):
1549
-
1556
.
6.
Jambhekar
A
,
Ackerman
EE
,
Alpay
BA
,
Lahav
G
,
Lovitch
SB
.
Comparison of TP53 mutations in myelodysplasia and acute leukemia suggests divergent roles in initiation and progression
.
Blood Neoplasia
.
2024
;
1
(
1
):
100004
.
7.
Soenen
V
,
Preudhomme
C
,
Roumier
C
,
Daudignon
A
,
Laï
JL
,
Fenaux
P
.
17p deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ
.
Blood
.
1998
;
91
(
3
):
1008
-
1015
.
8.
Mori
N
,
Hidai
H
,
Yokota
J
, et al
.
Mutations of the p53 gene in myelodysplastic syndrome and overt leukemia
.
Leuk Res
.
1995
;
19
(
11
):
869
-
875
.
9.
Kaneko
H
,
Misawa
S
,
Horiike
S
,
Nakai
H
,
Kashima
K
.
TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities
.
Blood
.
1995
;
85
(
8
):
2189
-
2193
.
10.
Wattel
E
,
Preudhomme
C
,
Hecquet
B
, et al
.
p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies
.
Blood
.
1994
;
84
(
9
):
3148
-
3157
.
11.
Rücker
FG
,
Schlenk
RF
,
Bullinger
L
, et al
.
TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome
.
Blood
.
2012
;
119
(
9
):
2114
-
2121
.
12.
Haase
D
,
Stevenson
KE
,
Neuberg
D
, et al
.
TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups
.
Leukemia
.
2019
;
33
(
7
):
1747
-
1758
.
13.
Pine
AB
,
Chokr
N
,
Stahl
M
, et al
.
Wide variation in use and interpretation of gene mutation profiling panels among health care providers of patients with myelodysplastic syndromes: results of a large web-based survey
.
Leuk Lymphoma
.
2020
;
61
(
6
):
1455
-
1464
.
14.
Senapati
J
,
Loghavi
S
,
Garcia-Manero
G
, et al
.
Clinical interrogation of TP53 aberrations and its impact on survival in patients with myeloid neoplasms
.
Haematologica
.
2025
;
110
(
6
):
1304
-
1315
.
15.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al
.
International Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
16.
Khoury
JD
,
Solary
E
,
Abla
O
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1703
-
1719
.
17.
Nawas
MT
,
Kosuri
S
.
Utility or futility? A contemporary approach to allogeneic hematopoietic cell transplantation for TP53-mutated MDS/AML
.
Blood Adv
.
2024
;
8
(
3
):
553
-
561
.
18.
Versluis
J
,
Lindsley
RC
.
Transplant for TP53-mutated MDS and AML: because we can or because we should?
.
Hematology
.
2022
;
2022
(
1
):
522
-
527
.
19.
O’Keefe
C
,
McDevitt
MA
,
Maciejewski
JP
.
Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies
.
Blood
.
2010
;
115
(
14
):
2731
-
2739
.
20.
Abel
HJ
,
Oetjen
KA
,
Miller
CA
, et al
.
Genomic landscape of TP53-mutated myeloid malignancies
.
Blood Adv
.
2023
;
7
(
16
):
4586
-
4598
.
21.
Versluis
J
,
Saber
W
,
Tsai
HK
, et al
.
Allogeneic hematopoietic cell transplantation improves outcome in myelodysplastic syndrome across high-risk genetic subgroups: genetic analysis of the Blood and Marrow Transplant Clinical Trials Network 1102 study
.
J Clin Oncol
.
2023
;
41
(
28
):
4497
-
4510
.
22.
Weinberg
OK
,
Siddon
A
,
Madanat
YF
, et al
.
TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML
.
Blood Adv
.
2022
;
6
(
9
):
2847
-
2853
.
23.
Tazi
Y
,
Arango-Ossa
JE
,
Zhou
Y
, et al
.
Unified classification and risk-stratification in acute myeloid leukemia
.
Nat Commun
.
2022
;
13
(
1
):
4622
.
24.
Senapati
J
,
Urrutia
S
,
Loghavi
S
, et al
.
Venetoclax abrogates the prognostic impact of splicing factor gene mutations in newly diagnosed acute myeloid leukemia
.
Blood
.
2023
;
142
(
19
):
1647
-
1657
.
25.
Döhner
H
,
Pratz
KW
,
DiNardo
CD
, et al
.
Genetic risk stratification and outcomes among treatment-naive patients with AML treated with venetoclax and azacitidine
.
Blood
.
2024
;
144
(
21
):
2211
-
2222
.
26.
Bernard
E
,
Tuechler
H
,
Greenberg
PL
, et al
.
Molecular International Prognostic Scoring System for myelodysplastic syndromes
.
NEJM Evid
.
2022
;
1
(
7
):
EVIDoa2200008
.
27.
Urrutia
S
,
Sasaki
K
,
Bataller
A
, et al
.
Oral decitabine/cedazuridine in patients with MDS and TP53 mutations: a propensity score matching analysis from the phase II and III trials [abstract]
.
Blood
.
2024
;
144
(
suppl 1
):
661
.
28.
Urrutia
S
,
Bose
P
,
Alvarado
Y
, et al
.
Prospective performance of the IWG-2023 and the IPSS-M in a phase 2 trial of guadecitabine in higher-risk MDS or CML
.
Blood Neoplasia
.
2024
;
1
(
2
):
100008
.
29.
Saito
Y
,
Koya
J
,
Araki
M
, et al
.
Landscape and function of multiple mutations within individual oncogenes
.
Nature
.
2020
;
582
(
7810
):
95
-
99
.
30.
Wong
TN
,
Miller
CA
,
Jotte
MRM
, et al
.
Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential
.
Nat Commun
.
2018
;
9
(
1
):
455
.
31.
Chowdhury
O
,
Gurashi
K
,
Wood
A
, et al
.
Single-cell multiomic profiling of TP53 mutated myelodysplastic neoplasms - all clones are not equal [abstract]
.
Blood
.
2024
;
144
(
suppl 1
):
3615
.
32.
Esteve
J
,
Nagler
A
,
Labopin
M
, et al
.
Allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia with myelodysplasia-related genetic features: relevance of the genetic underlying category. A retrospective analysis on behalf of the Acute Leukemia Working Party of the EBMT
.
Am J Hematol
.
2025
;
100
(
6
):
954
-
962
.
33.
Greenberg
PL
,
Stone
RM
,
Al-Kali
A
, et al
.
NCCN guidelines® insights: myelodysplastic syndromes, version 3.2022
.
J Natl Compr Canc Netw
.
2022
;
20
(
2
):
106
-
117
.
34.
Pollyea
DA
,
Bixby
D
,
Perl
A
, et al
.
NCCN guidelines insights: acute myeloid leukemia, version 2.2021
.
J Natl Compr Canc Netw
.
2021
;
19
(
1
):
16
-
27
.
35.
Sedlazeck
FJ
,
Rescheneder
P
,
Smolka
M
, et al
.
Accurate detection of complex structural variations using single-molecule sequencing
.
Nat Methods
.
2018
;
15
(
6
):
461
-
468
.
36.
Greenberg
PL
,
Tuechler
H
,
Schanz
J
, et al
.
Revised International Prognostic Scoring System for myelodysplastic syndromes
.
Blood
.
2012
;
120
(
12
):
2454
-
2465
.
37.
Grimwade
D
,
Walker
H
,
Oliver
F
, et al
.
The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties
.
Blood
.
1998
;
92
(
7
):
2322
-
2333
.
38.
Medeiros
BC
,
Othus
M
,
Estey
EH
,
Fang
M
,
Appelbaum
FR
.
Unsuccessful diagnostic cytogenetic analysis is a poor prognostic feature in acute myeloid leukaemia
.
Br J Haematol
.
2014
;
164
(
2
):
245
-
250
.
39.
Lübbert
M
,
Suciu
S
,
Hagemeijer
A
, et al
.
Decitabine improves progression-free survival in older high-risk MDS patients with multiple autosomal monosomies: results of a subgroup analysis of the randomized phase III study 06011 of the EORTC Leukemia Cooperative Group and German MDS Study Group
.
Ann Hematol
.
2016
;
95
(
2
):
191
-
199
.
40.
Fenaux
P
,
Mufti
GJ
,
Hellstrom-Lindberg
E
, et al
.
Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study
.
Lancet Oncol
.
2009
;
10
(
3
):
223
-
232
.
41.
Adès
L
,
Girshova
L
,
Doronin
VA
, et al
.
Pevonedistat plus azacitidine vs azacitidine alone in higher-risk MDS/chronic myelomonocytic leukemia or low-blast-percentage AML
.
Blood Adv
.
2022
;
6
(
17
):
5132
-
5145
.
42.
Dombret
H
,
Seymour
JF
,
Butrym
A
, et al
.
International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts
.
Blood
.
2015
;
126
(
3
):
291
-
299
.
43.
Wei
AH
,
Montesinos
P
,
Ivanov
V
, et al
.
Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial
.
Blood
.
2020
;
135
(
24
):
2137
-
2145
.
44.
DiNardo
CD
,
Jonas
BA
,
Pullarkat
V
, et al
.
Azacitidine and venetoclax in previously untreated acute myeloid leukemia
.
N Engl J Med
.
2020
;
383
(
7
):
617
-
629
.
45.
Steidl
C
,
Steffens
R
,
Gassmann
W
, et al
.
Adequate cytogenetic examination in myelodysplastic syndromes: analysis of 529 patients
.
Leuk Res
.
2005
;
29
(
9
):
987
-
993
.
46.
de Swart
L
,
Smith
A
,
Haase
D
, et al
.
Prognostic impact of a suboptimal number of analyzed metaphases in normal karyotype lower-risk MDS
.
Leuk Res
.
2018
;
67
:
21
-
26
.
47.
Prochazka
KT
,
Pregartner
G
,
Rücker
FG
, et al
.
Clinical implications of subclonal TP53 mutations in acute myeloid leukemia
.
Haematologica
.
2019
;
104
(
3
):
516
-
523
.
48.
Ruzinova
MB
,
Lee
YS
,
Duncavage
EJ
,
Welch
JS
.
TP53 immunohistochemistry correlates with TP53 mutation status and clearance in decitabine-treated patients with myeloid malignancies
.
Haematologica
.
2019
;
104
(
8
):
e345
-
e348
.
49.
Fitzpatrick
MJ
,
Boiocchi
L
,
Fathi
AT
,
Brunner
AM
,
Hasserjian
RP
,
Nardi
V
.
Correlation of p53 immunohistochemistry with TP53 mutational status and overall survival in newly diagnosed acute myeloid leukaemia
.
Histopathology
.
2022
;
81
(
4
):
496
-
510
.
50.
Tashakori
M
,
Kadia
T
,
Loghavi
S
, et al
.
TP53 copy number and protein expression inform mutation status across risk categories in acute myeloid leukemia
.
Blood
.
2022
;
140
(
1
):
58
-
72
.
51.
Martin
ES
,
Ferrer
A
,
Mangaonkar
AA
, et al
.
Spectrum of hematological malignancies, clonal evolution and outcomes in 144 Mayo Clinic patients with germline predisposition syndromes
.
Am J Hematol
.
2021
;
96
(
11
):
1450
-
1460
.
52.
ARUP Laboratories Test Directory
.
Myeloid malignancies mutation panel by next generation sequencing
. Accessed 10 March 2025. https://ltd.aruplab.com/Tests/Pub/2011117.
53.
MLL Münchner Leukämielabor GmbH
.
MLLSeq: new sequencing service of the MLL Munich Leukemia Laboratory
. Accessed 21 May 2025. https://www.mll.com/en/07-2021-mllseq-new-sequencing-service-of-the-mll-munich-leukemia-laboratory/pm_mllseq-sequencing-services_en_final.pdf.
54.
Versluis
J
,
Metzner
M
,
Wang
A
, et al
.
Risk stratification in older intensively treated patients with AML
.
JCO
.
2024
;
42
(
34
):
4084
-
4094
.
55.
Palomo
L
,
Ibáñez
M
,
Abáigar
M
, et al
.
Spanish guidelines for the use of targeted deep sequencing in myelodysplastic syndromes and chronic myelomonocytic leukaemia
.
Br J Haematol
.
2020
;
188
(
5
):
605
-
622
.
56.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
57.
Levy
B
,
Kanagal-Shamanna
R
,
Sahajpal
NS
, et al
.
A framework for the clinical implementation of optical genome mapping in hematologic malignancies
.
Am J Hematol
.
2024
;
99
(
4
):
642
-
661
.
58.
McKerrell
T
,
Moreno
T
,
Ponstingl
H
, et al
.
Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies
.
Blood
.
2016
;
128
(
1
):
e1
-
e9
.
59.
Duncavage
EJ
,
Schroeder
MC
,
O’Laughlin
M
, et al
.
Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers
.
N Engl J Med
.
2021
;
384
(
10
):
924
-
935
.
60.
Duncavage
EJ
,
Bagg
A
,
Hasserjian
RP
, et al
.
Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia
.
Blood
.
2022
;
140
(
21
):
2228
-
2247
.
61.
Al Amri
R
,
Baloda
V
,
Monaghan
SA
, et al
.
Validation of independent prognostic significance of blast count in a large cohort of MDS patients
.
Leukemia
.
2024
;
38
(
9
):
2064
-
2067
.
62.
Huber
S
,
Haferlach
T
,
Hutter
S
,
Hoermann
G
,
Kern
W
,
Haferlach
C
.
Relevance of blast counts for genetic subclassification in MDS
.
Leukemia
.
2025
;
39
(
1
):
271
-
273
.
63.
Huber
S
,
Haferlach
T
,
Müller
H
, et al
.
MDS subclassification—do we still have to count blasts?
.
Leukemia
.
2023
;
37
(
4
):
942
-
945
.
64.
Wong
TN
,
Ramsingh
G
,
Young
AL
, et al
.
Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
.
Nature
.
2015
;
518
(
7540
):
552
-
555
.
65.
Yan
B
,
Chen
Q
,
Xu
J
,
Li
W
,
Xu
B
,
Qiu
Y
.
Low-frequency TP53 hotspot mutation contributes to chemoresistance through clonal expansion in acute myeloid leukemia
.
Leukemia
.
2020
;
34
(
7
):
1816
-
1827
.
66.
Patel
SA
,
Lloyd
MR
,
Cerny
J
, et al
.
Clinico-genomic profiling and clonal dynamic modeling of TP53-aberrant myelodysplastic syndrome and acute myeloid leukemia
.
Leuk Lymphoma
.
2021
;
62
(
14
):
3348
-
3360
.
67.
Yan
B
,
Claxton
D
,
Huang
S
,
Qiu
Y
.
AML chemoresistance: the role of mutant TP53 subclonal expansion and therapy strategy
.
Exp Hematol
.
2020
;
87
:
13
-
19
.
68.
Zampini
M
,
Riva
E
,
Lanino
L
, et al
.
Characterization and clinical implications of p53 dysfunction in patients with myelodysplastic syndromes
.
JCO
.
2025
;
43
(
18
):
2069
-
2083
.
69.
Magi
A
,
Mattei
G
,
Mingrino
A
, et al
.
High-resolution nanopore methylome-maps reveal random hyper-methylation at CpG-poor regions as driver of chemoresistance in leukemias
.
Commun Biol
.
2023
;
6
(
1
):
382
.
70.
Katsman
E
,
Orlanski
S
,
Martignano
F
, et al
.
Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing
.
Genome Biol
.
2022
;
23
(
1
):
158
.
71.
Watson
CJ
,
Papula
AL
,
Poon
GYP
, et al
.
The evolutionary dynamics and fitness landscape of clonal hematopoiesis
.
Science
.
2020
;
367
(
6485
):
1449
-
1454
.
72.
Weeks
LD
,
Niroula
A
,
Neuberg
D
, et al
.
Prediction of risk for myeloid malignancy in clonal hematopoiesis
.
NEJM Evid
.
2023
;
2
(
5
):
EVIDoa2200310
.
73.
Hanel
W
,
Marchenko
N
,
Xu
S
,
Yu
SX
,
Weng
W
,
Moll
U
.
Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis
.
Cell Death Differ
.
2013
;
20
(
7
):
898
-
909
.
74.
Lang
GA
,
Iwakuma
T
,
Suh
YA
, et al
.
Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome
.
Cell
.
2004
;
119
(
6
):
861
-
872
.
75.
Olive
KP
,
Tuveson
DA
,
Ruhe
ZC
, et al
.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome
.
Cell
.
2004
;
119
(
6
):
847
-
860
.
76.
Liu
DP
,
Song
H
,
Xu
Y
.
A common gain of function of p53 cancer mutants in inducing genetic instability
.
Oncogene
.
2010
;
29
(
7
):
949
-
956
.
77.
Song
H
,
Hollstein
M
,
Xu
Y
.
p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM
.
Nat Cell Biol
.
2007
;
9
(
5
):
573
-
580
.
78.
Xiong
S
,
Chachad
D
,
Zhang
Y
, et al
.
Differential gain-of-function activity of three p53 hotspot mutants in vivo
.
Cancer Res
.
2022
;
82
(
10
):
1926
-
1936
.
79.
Giacomelli
AO
,
Yang
X
,
Lintner
RE
, et al
.
Mutational processes shape the landscape of TP53 mutations in human cancer
.
Nat Genet
.
2018
;
50
(
10
):
1381
-
1387
.
80.
Boettcher
S
,
Miller
PG
,
Sharma
R
, et al
.
A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies
.
Science
.
2019
;
365
(
6453
):
599
-
604
.
81.
Coombs
CC
,
Zehir
A
,
Devlin
SM
, et al
.
Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes
.
Cell Stem Cell
.
2017
;
21
(
3
):
374
-
382.e4
.
82.
Gibson
CJ
,
Lindsley
RC
,
Tchekmedyian
V
, et al
.
Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma
.
J Clin Oncol
.
2017
;
35
(
14
):
1598
-
1605
.
83.
Fabre
MA
,
de Almeida
JG
,
Fiorillo
E
, et al
.
The longitudinal dynamics and natural history of clonal haematopoiesis
.
Nature
.
2022
;
606
(
7913
):
335
-
342
.
84.
Uryu
H
,
Saeki
K
,
Haeno
H
, et al
.
Clonal evolution of hematopoietic stem cells after cancer chemotherapy
.
bioRxiv
.
Preprint posted online 24 May 2024
.
85.
Pourebrahim
R
,
Montoya
RH
,
Akiyama
H
, et al
.
Age-specific induction of mutant p53 drives clonal hematopoiesis and acute myeloid leukemia in adult mice
.
Cell Rep Med
.
2024
;
5
(
5
):
101558
.
86.
Zekavat
SM
,
Viana-Huete
V
,
Matesanz
N
, et al
.
TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease
.
Nat Cardiovasc Res
.
2023
;
2
:
144
-
158
.
87.
Neskey
DM
,
Osman
AA
,
Ow
TJ
, et al
.
Evolutionary action score of TP53 identifies high-risk mutations associated with decreased survival and increased distant metastases in head and neck cancer
.
Cancer Res
.
2015
;
75
(
7
):
1527
-
1536
.
88.
Kotler
E
,
Shani
O
,
Goldfeld
G
, et al
.
A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation
.
Mol Cell
.
2018
;
71
(
1
):
178
-
190.e8
.
89.
Dutta
S
,
Pregartner
G
,
Rücker
FG
, et al
.
Functional classification of TP53 mutations in acute myeloid leukemia
.
Cancers (Basel)
.
2020
;
12
(
3
):
637
.
90.
Chen
S
,
Wu
JL
,
Liang
Y
, et al
.
Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site
.
Cancer Cell
.
2021
;
39
(
2
):
225
-
239.e8
.
91.
Song
H
,
Wu
J
,
Tang
Y
, et al
.
Diverse rescue potencies of p53 mutations to ATO are predetermined by intrinsic mutational properties
.
Sci Transl Med
.
2023
;
15
(
690
):
eabn9155
.
92.
Hsiue
EHC
,
Wright
KM
,
Douglass
J
, et al
.
Targeting a neoantigen derived from a common TP53 mutation
.
Science
.
2021
;
371
(
6533
):
eabc8697
.
93.
Mazzonetto
PC
,
Villela
D
,
da Costa
SS
, et al
.
Low-pass whole genome sequencing is a reliable and cost-effective approach for copy number variant analysis in the clinical setting
.
Ann Hum Genet
.
2024
;
88
(
2
):
113
-
125
.
94.
Priestley
P
,
Baber
J
,
Lolkema
MP
, et al
.
Pan-cancer whole-genome analyses of metastatic solid tumours
.
Nature
.
2019
;
575
(
7781
):
210
-
216
.
95.
Awada
H
,
Nagata
Y
,
Goyal
A
, et al
.
Invariant phenotype and molecular association of biallelic TET2 mutant myeloid neoplasia
.
Blood Adv
.
2019
;
3
(
3
):
339
-
349
.
You do not currently have access to this content.
Sign in via your Institution