• Nanobody-based CD7 CAR-T therapy demonstrated a high CR rate for treating patients with CD7+ AML.

  • CD7 loss may be more frequent in patients with AML after CAR-T therapy.

Abstract

Approximately 30% of patients with acute myeloid leukemia (AML) express CD7 on their myeloblasts. We have previously demonstrated that single-chain variable fragment (scFv)–based “naturally selected” CD7 chimeric antigen receptor T-cell (NS7CAR-T) therapy shows significant efficacy, with a favorable safety profile in T-cell lymphoid malignancies. Here, we derived dual variable heavy-chain domain of a heavy-chain antibody (dVHH) NS7CAR-Ts that have superior CD7 binding specificity, affinity to their scFv-based counterparts, and improved proliferative capability. In this phase 1 clinical trial, we evaluated the efficacy and safety of nanobody-based dVHH NS7CAR-Ts for patients with CD7+ refractory/relapsed AML. A cohort of 10 patients received dVHH NS7CAR-Ts across 2 dosage levels of 5 × 105/kg and 1 × 106/kg. Before enrollment, patients had undergone a median of 8 (range, 3-17) prior lines of therapy. Seven patients had prior transplants. After NS7CAR-T infusion, 7 of 10 (70%) patients achieved complete remission (CR). The median observation time was 178 days (range, 28-776). Among 7 patients who achieved CR, 3 who relapsed from prior transplants underwent a second allogeneic hematopoietic stem cell transplant (allo-HSCT). One patient remained leukemia free on day 401, and the other 2 died on day 241 and day 776, respectively, from nonrelapse-related causes. Three CR patients without consolidative (allo-HSCT) relapsed within 90 days. All the nonresponders and relapsed patients had CD7 loss. The treatment was well tolerated, with 80% experiencing mild cytokine release syndrome and none had neurotoxicity. This trial underscores the potential promising treatment of dVHH NS7CAR-Ts in providing clinical benefits with a manageable safety profile to patients with CD7+ AML, warranting further investigation. This trial was registered at www.clinicaltrials.gov as #NCT04938115.

1.
Mohamed Jiffry
MZ
,
Kloss
R
,
Ahmed-Khan
M
, et al
.
A review of treatment options employed in relapsed/refractory AML
.
Hematology
.
2023
;
28
(
1
):
2196482
.
2.
Stubbins
RJ
,
Francis
A
,
Kuchenbauer
F
,
Sanford
D
.
Management of acute myeloid leukemia: a review for general practitioners in oncology
.
Curr Oncol
.
2022
;
29
(
9
):
6245
-
6259
.
3.
Montoro
J
,
Balaguer-Roselló
A
,
Sanz
J
.
Recent advances in allogeneic transplantation for acute myeloid leukemia
.
Curr Opin Oncol
.
2023
;
35
(
6
):
564
-
573
.
4.
Yuan
XL
,
Lai
XY
,
Wu
YB
, et al
.
A novel risk model for predicting early relapse in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem-cell transplantation
.
Bone Marrow Transplant
.
2023
;
58
(
7
):
801
-
810
.
5.
Thol
F
,
Heuser
M
.
Treatment for relapsed/refractory acute myeloid leukemia
.
Hemasphere
.
2021
;
5
(
6
):
e572
.
6.
Thol
F
,
Döhner
H
,
Ganser
A
.
How I treat refractory and relapsed acute myeloid leukemia
.
Blood
.
2024
;
143
(
1
):
11
-
20
.
7.
Shah
BD
,
Ghobadi
A
,
Oluwole
OO
, et al
.
KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study
.
Lancet
.
2021
;
398
(
10299
):
491
-
502
.
8.
Pan
J
,
Tan
Y
,
Wang
G
, et al
.
Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial
.
J Clin Oncol
.
2021
;
39
(
30
):
3340
-
3351
.
9.
Lu
P
,
Liu
Y
,
Yang
J
, et al
.
Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial
.
Blood
.
2022
;
140
(
4
):
321
-
334
.
10.
Zhang
X
,
Yang
J
,
Li
J
, et al
.
Analysis of 60 patients with relapsed or refractory T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma treated with CD7-targeted chimeric antigen receptor-T cell therapy
.
Am J Hematol
.
2023
;
98
(
12
):
1898
-
1908
.
11.
Martin
T
,
Jackson
CC
,
Pacaud
L
,
Madduri
D
,
Jagannath
S
.
Recent advances in the use of chimeric antigen receptor-expressing T-cell therapies for treatment of multiple myeloma
.
Clin Lymphoma Myeloma Leuk
.
2023
;
23
(
1
):
22
-
27
.
12.
Martin
T
,
Usmani
SZ
,
Berdeja
JG
, et al
.
Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up
.
J Clin Oncol
.
2023
;
41
(
6
):
1265
-
1274
.
13.
Bachy
E
,
Le Gouill
S
,
Di Blasi
R
, et al
.
A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma
.
Nat Med
.
2022
;
28
(
10
):
2145
-
2154
.
14.
Shao
R
,
Li
Z
,
Xin
H
, et al
.
Biomarkers as targets for CAR-T/NK cell therapy in AML
.
Biomark Res
.
2023
;
11
(
1
):
65
.
15.
Vishwasrao
P
,
Li
G
,
Boucher
JC
,
Smith
DL
,
Hui
SK
.
Emerging CAR T cell strategies for the treatment of AML
.
Cancers
.
2022
;
14
(
5
):
1241
.
16.
Atilla
E
,
Benabdellah
K
.
The black hole: CAR T cell therapy in AML
.
Cancers
.
2023
;
15
(
10
):
2713
.
17.
Zarychta
J
,
Kowalczyk
A
,
Krawczyk
M
,
Lejman
M
,
Zawitkowska
J
.
CAR-T cells immunotherapies for the treatment of acute myeloid leukemia-recent advances
.
Cancers
.
2023
;
15
(
11
):
2944
.
18.
Vanhooren
J
,
Dobbelaere
R
,
Derpoorter
C
, et al
.
CAR-T in the treatment of acute myeloid leukemia: barriers and how to overcome them
.
Hemasphere
.
2023
;
7
(
9
):
e937
.
19.
Guo
S
,
Gao
X
,
Sadhana
M
, et al
.
Developing strategies to improve the efficacy of CAR-T therapy for acute myeloid leukemia
.
Curr Treat Options Oncol
.
2023
;
24
(
11
):
1614
-
1632
.
20.
Wei
W
,
Yang
D
,
Chen
X
,
Liang
D
,
Zou
L
,
Zhao
X
.
Chimeric antigen receptor T-cell therapy for T-ALL and AML
.
Front Oncol
.
2022
;
12
:
967754
.
21.
Calviño
C
,
Ceballos
C
,
Alfonso
A
, et al
.
Optimization of universal allogeneic CAR-T cells combining CRISPR and transposon-based technologies for treatment of acute myeloid leukemia
.
Front Immunol
.
2023
;
14
:
1270843
.
22.
Shahzad
M
,
Nguyen
A
,
Hussain
A
, et al
.
Outcomes with chimeric antigen receptor t-cell therapy in relapsed or refractory acute myeloid leukemia: a systematic review and meta-analysis
.
Front Immunol
.
2023
;
14
:
1152457
.
23.
Cao
X
,
Dai
H
,
Cui
Q
, et al
.
CD7-directed CAR T-cell therapy: a potential immunotherapy strategy for relapsed/refractory acute myeloid leukemia
.
Exp Hematol Oncol
.
2022
;
11
(
1
):
67
.
24.
Gomes-Silva
D
,
Atilla
E
,
Atilla
PA
, et al
.
CD7 CAR T cells for the therapy of acute myeloid leukemia
.
Mol Ther
.
2019
;
27
(
1
):
272
-
280
.
25.
Chang
H
,
Yeung
J
,
Brandwein
J
,
Yi
QL
.
CD7 expression predicts poor disease free survival and post-remission survival in patients with acute myeloid leukemia and normal karyotype
.
Leuk Res
.
2007
;
31
(
2
):
157
-
162
.
26.
Cooper
ML
,
Choi
J
,
Staser
K
, et al
.
An "off-the-shelf" fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies
.
Leukemia
.
2018
;
32
(
9
):
1970
-
1983
.
27.
Lu
Y
,
Liu
Y
,
Wen
S
, et al
.
Naturally selected CD7 CAR-T therapy without genetic editing demonstrates significant antitumour efficacy against relapsed and refractory acute myeloid leukaemia (R/R-AML)
.
J Transl Med
.
2022
;
20
(
1
):
600
.
28.
Safarzadeh Kozani
P
,
Naseri
A
,
Mirarefin
SMJ
, et al
.
Nanobody-based CAR-T cells for cancer immunotherapy
.
Biomark Res
.
2022
;
10
(
1
):
24
.
29.
Hamers-Casterman
C
,
Atarhouch
T
,
Muyldermans
S
, et al
.
Naturally occurring antibodies devoid of light chains
.
Nature
.
1993
;
363
(
6428
):
446
-
448
.
30.
Ingram
JR
,
Schmidt
FI
,
Ploegh
HL
.
Exploiting nanobodies' singular traits
.
Annu Rev Immunol
.
2018
;
36
:
695
-
715
.
31.
Xie
YJ
,
Dougan
M
,
Ingram
JR
, et al
.
Improved antitumor efficacy of chimeric antigen receptor T cells that secrete single-domain antibody fragments
.
Cancer Immunol Res
.
2020
;
8
(
4
):
518
-
529
.
32.
Sharifzadeh
Z
,
Rahbarizadeh
F
,
Shokrgozar
MA
, et al
.
Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents
.
Cancer Lett
.
2013
;
334
(
2
):
237
-
244
.
33.
Muyldermans
S
.
Nanobodies: natural single-domain antibodies
.
Annu Rev Biochem
.
2013
;
82
:
775
-
797
.
34.
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Version 2.2019 Acute Myeloid Leukemia. National Comprehensive Cancer Network
. 2019. Accessed 2 March 2020. https://www.nccn.org.
35.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al
.
ASTCT Consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
625
-
638
.
36.
U.S. Department of Health And Human Services
.
Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. Cancer Therapy Evaluation Program (CTEP)
. 2017. Accessed 29 March 2021. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf.
37.
Porwit-MacDonald
A
,
Björklund
E
,
Lucio
P
, et al
.
BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL)
.
Leukemia
.
2000
;
14
(
5
):
816
-
825
.
38.
Roshal
M
,
Fromm
JR
,
Winter
S
,
Dunsmore
K
,
Wood
BL
.
Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection
.
Cytometry B Clin Cytom
.
2010
;
78
(
3
):
139
-
146
.
39.
Langebrake
C
,
Brinkmann
I
,
Teigler-Schlegel
A
, et al
.
Immunophenotypic differences between diagnosis and relapse in childhood AML: implications for MRD monitoring
.
Cytometry B Clin Cytom
.
2005
;
63
(
1
):
1
-
9
.
40.
Master
PS
,
Jones
RA
,
Richards
SJ
,
Scott
CS
.
Patterns of membrane antigen expression by AML blasts: quantitation and histogram analysis
.
Leuk Lymphoma
.
1991
;
5
(
5-6
):
317
-
325
.
41.
Dworzak
MN
,
Buldini
B
,
Gaipa
G
, et al
.
AIEOP-BFM Consensus guidelines 2016 for flow cytometric immunophenotyping of pediatric acute lymphoblastic leukemia
.
Cytometry B Clin Cytom
.
2018
;
94
(
1
):
82
-
93
.
42.
Zeijlemaker
W
,
Gratama
JW
,
Schuurhuis
GJ
.
Tumor heterogeneity makes AML a "moving target" for detection of residual disease
.
Cytometry B Clin Cytom
.
2014
;
86
(
1
):
3
-
14
.
43.
Schorr
C
,
Perna
F
.
Targets for chimeric antigen receptor T-cell therapy of acute myeloid leukemia
.
Front Immunol
.
2022
;
13
:
1085978
.
44.
Cappell
KM
,
Kochenderfer
JN
.
Long-term outcomes following CAR T cell therapy: what we know so far
.
Nat Rev Clin Oncol
.
2023
;
20
(
6
):
359
-
371
.
45.
Myers
RM
,
Shah
NN
,
Pulsipher
MA
.
How I use risk factors for success or failure of CD19 CAR T cells to guide management of children and AYA with B-cell ALL
.
Blood
.
2023
;
141
(
11
):
1251
-
1264
.
46.
Hu
Y
,
Zhang
M
,
Yang
T
, et al
.
Sequential CD7 CAR T-cell therapy and allogeneic HSCT without GVHD prophylaxis
.
N Engl J Med
.
2024
;
390
(
16
):
1467
-
1480
.
47.
Voskova
D
,
Schoch
C
,
Schnittger
S
,
Hiddemann
W
,
Haferlach
T
,
Kern
W
.
Stability of leukemia-associated aberrant immunophenotypes in patients with acute myeloid leukemia between diagnosis and relapse: comparison with cytomorphologic, cytogenetic, and molecular genetic findings
.
Cytometry B Clin Cytom
.
2004
;
62
(
1
):
25
-
38
.
48.
Kern
W
,
Danhauser-Riedl
S
,
Ratei
R
, et al
.
Detection of minimal residual disease in unselected patients with acute myeloid leukemia using multiparameter flow cytometry for definition of leukemia-associated immunophenotypes and determination of their frequencies in normal bone marrow
.
Haematologica
.
2003
;
88
(
6
):
646
-
653
.
49.
Liu
Q
,
Qi
L
,
Yang
M
, et al
.
Immunophenotype distinctions of CEBPA mutation subtypes in acute myeloid leukemia
.
Int J Lab Hematol
.
2023
;
45
(
5
):
743
-
750
.
50.
Lin
LI
,
Chen
CY
,
Lin
DT
, et al
.
Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells
.
Clin Cancer Res
.
2005
;
11
(
4
):
1372
-
1379
.
51.
Mannelli
F
,
Ponziani
V
,
Bencini
S
, et al
.
CEBPA-double-mutated acute myeloid leukemia displays a unique phenotypic profile: a reliable screening method and insight into biological features
.
Haematologica
.
2017
;
102
(
3
):
529
-
540
.
You do not currently have access to this content.
Sign in via your Institution