• Foxo1 regulates hepcidin expression and systemic iron homeostasis.

  • Foxo1 could serve as a therapeutic target for hereditary hemochromatosis.

Abstract

The liver plays a crucial role in maintaining systemic iron homeostasis by secreting hepcidin, which is essential for coordinating iron levels in the body. Imbalances in iron homeostasis are associated with various clinical disorders related to iron deficiency or iron overload. Despite the clinical significance, the mechanisms underlying how hepatocytes sense extracellular iron levels to regulate hepcidin synthesis and iron storage are not fully understood. In this study, we identified Foxo1, a well-known regulator of macronutrient metabolism, which translocates to the nucleus of hepatocytes in response to high-iron feeding, holo-transferrin, and bone morphogenetic protein 6 (BMP6) treatment. Furthermore, Foxo1 plays a crucial role in mediating hepcidin induction in response to both iron and BMP signals by directly interacting with evolutionally conserved Foxo binding sites within the hepcidin promoter region. These binding sites were found to colocalize with Smad-binding sites. To investigate the physiological relevance of Foxo1 in iron metabolism, we generated mice with hepatocyte-specific deletion of Foxo1. These mice exhibited reduced hepatic hepcidin expression and serum hepcidin levels, accompanied by elevated serum iron and liver nonheme iron concentrations. Moreover, high-iron diet further exacerbated these abnormalities in iron metabolism in mice lacking hepatic Foxo1. Conversely, hepatocyte-specific Foxo1 overexpression increased hepatic hepcidin expression and serum hepcidin levels, thereby ameliorating iron overload in a murine model of hereditary hemochromatosis (Hfe/− mice). In summary, our study identifies Foxo1 as a critical regulator of hepcidin and systemic iron homeostasis. Targeting Foxo1 may offer therapeutic opportunities for managing conditions associated with aberrant iron metabolism.

1.
Pasricha
SR
,
Tye-Din
J
,
Muckenthaler
MU
,
Swinkels
DW
.
Iron deficiency
.
Lancet
.
2021
;
397
(
10270
):
233
-
248
.
2.
Harrison
AV
,
Lorenzo
FR
,
McClain
DA
.
Iron and the pathophysiology of diabetes
.
Annu Rev Physiol
.
2023
;
85(1)
:
339
-
362
.
3.
Wang
CY
,
Babitt
JL
.
Liver iron sensing and body iron homeostasis
.
Blood
.
2019
;
133
(
1
):
18
-
29
.
4.
Nemeth
E
,
Ganz
T
.
Hepcidin and iron in health and disease
.
Annu Rev Med
.
2022
;
74
(
1
):
261
-
277
.
5.
Nemeth
E
,
Tuttle
MS
,
Powelson
J
, et al
.
Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
.
Science
.
2004
;
306
(
5704
):
2090
-
2093
.
6.
Galy
B
,
Conrad
M
,
Muckenthaler
M
.
Mechanisms controlling cellular and systemic iron homeostasis
.
Nat Rev Mol Cell Biol
.
2024
;
25
(
2
):
133
-
155
.
7.
Koch
PS
,
Olsavszky
V
,
Ulbrich
F
, et al
.
Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis
.
Blood
.
2017
;
129
(
4
):
415
-
419
.
8.
Canali
S
,
Zumbrennen-Bullough
KB
,
Core
AB
, et al
.
Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice
.
Blood
.
2017
;
129
(
4
):
405
-
414
.
9.
Xiao
X
,
Moschetta
GA
,
Xu
Y
, et al
.
Regulation of iron homeostasis by hepatocyte TfR1 requires HFE and contributes to hepcidin suppression in beta-thalassemia
.
Blood
.
2023
;
141
(
4
):
422
-
432
.
10.
Gao
JW
,
Chen
JX
,
Kramer
M
,
Tsukamoto
H
,
Zhang
AS
,
Enns
CA
.
Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression
.
Cell Metab
.
2009
;
9
(
3
):
217
-
227
.
11.
Wang
CY
,
Xu
Y
,
Traeger
L
, et al
.
Erythroferrone lowers hepcidin by sequestering BMP2/6 heterodimer from binding to the BMP type I receptor ALK3
.
Blood
.
2020
;
135
(
6
):
453
-
456
.
12.
Girelli
D
,
Busti
F
,
Brissot
P
,
Cabantchik
I
,
Muckenthaler
MU
,
Porto
G
.
Hemochromatosis classification: update and recommendations by the BIOIRON Society
.
Blood
.
2022
;
139
(
20
):
3018
-
3029
.
13.
Link
W
.
Introduction to FOXO biology
.
Methods Mol Biol
.
2019
;
1890
:
1
-
9
.
14.
Czech
MP
.
Insulin action and resistance in obesity and type 2 diabetes
.
Nat Med
.
2017
;
23
(
7
):
804
-
814
.
15.
Petersen
MC
,
Vatner
DF
,
Shulman
GI
.
Regulation of hepatic glucose metabolism in health and disease
.
Nat Rev Endocrinol
.
2017
;
13
(
10
):
572
-
587
.
16.
Yin
F
,
Wu
MM
,
Wei
XL
, et al
.
Hepatic NCoR1 deletion exacerbates alcohol-induced liver injury in mice by promoting CCL2-mediated monocyte-derived macrophage infiltration
.
Acta Pharmacol Sin
.
2022
;
43
(
9
):
2351
-
2361
.
17.
Zhang
Z
,
Funcke
JB
,
Zi
Z
, et al
.
Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity
.
Cell Metab
.
2021
;
33
(
8
):
1624
-
1639.e9
.
18.
Mathijs
K
,
Kienhuis
AS
,
Brauers
KJ
, et al
.
Assessing the metabolic competence of sandwich-cultured mouse primary hepatocytes
.
Drug Metab Dispos
.
2009
;
37
(
6
):
1305
-
1311
.
19.
Coulon
S
,
Legry
V
,
Heindryckx
F
, et al
.
Role of vascular endothelial growth factor in the pathophysiology of nonalcoholic steatohepatitis in two rodent models
.
Hepatology
.
2013
;
57
(
5
):
1793
-
1805
.
20.
Zhang
K
,
Guo
X
,
Yan
H
, et al
.
Phosphorylation of Forkhead protein FoxO1 at S253 regulates glucose homeostasis in mice
.
Endocrinology
.
2019
;
160
(
5
):
1333
-
1347
.
21.
Stöhr
O
,
Schilbach
K
,
Moll
L
, et al
.
Insulin receptor signaling mediates APP processing and β-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer's disease
.
Age
.
2013
;
35
(
1
):
83
-
101
.
22.
Yu
JS
,
Ramasamy
TS
,
Murphy
N
, et al
.
PI3K/mTORC2 regulates TGF-beta/Activin signalling by modulating Smad2/3 activity via linker phosphorylation
.
Nat Commun
.
2015
;
6
:
7212
.
23.
Corradini
E
,
Meynard
D
,
Wu
Q
, et al
.
Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice
.
Hepatology
.
2011
;
54
(
1
):
273
-
284
.
24.
Nagashima
T
,
Shigematsu
N
,
Maruki
R
, et al
.
Discovery of novel Forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice
.
Mol Pharmacol
.
2010
;
78
(
5
):
961
-
970
.
25.
Cautain
B
,
Castillo
F
,
Musso
L
, et al
.
Discovery of a novel, isothiazolonaphthoquinone-based small molecule activator of FOXO nuclear-cytoplasmic shuttling
.
PLoS One
.
2016
;
11
(
12
):
e0167491
.
26.
Matsumoto
M
,
Pocai
A
,
Rossetti
L
,
Depinho
RA
,
Accili
D
.
Impaired regulation of hepatic glucose production in mice lacking the Forkhead transcription factor Foxo1 in liver
.
Cell Metab
.
2007
;
6
(
3
):
208
-
216
.
27.
Girelli
D
,
Nemeth
E
,
Swinkels
DW
.
Hepcidin in the diagnosis of iron disorders
.
Blood
.
2016
;
127
(
23
):
2809
-
2813
.
28.
van Swelm
RPL
,
Wetzels
JFM
,
Swinkels
DW
.
The multifaceted role of iron in renal health and disease
.
Nat Rev Nephrol
.
2020
;
16
(
2
):
77
-
98
.
29.
Vecchi
C
,
Montosi
G
,
Garuti
C
, et al
.
Gluconeogenic signals regulate iron homeostasis via hepcidin in mice
.
Gastroenterology
.
2014
;
146
(
4
):
1060
-
1069
.
30.
Murphy
RD
,
James
KM
,
Ippolito
JR
, et al
.
Mild to moderate food deprivation increases hepcidin and results in hypoferremia and tissue iron sequestration in mice
.
J Nutr
.
2022
;
152
(
10
):
2198
-
2208
.
31.
Vecchi
C
,
Montosi
G
,
Zhang
KZ
, et al
.
ER stress controls iron metabolism through induction of hepcidin
.
Science
.
2009
;
325
(
5942
):
877
-
880
.
32.
Lee
MW
,
Chanda
D
,
Yang
JQ
, et al
.
Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH
.
Cell Metab
.
2010
;
11
(
4
):
331
-
339
.
33.
Puigserver
P
,
Rhee
J
,
Donovan
J
, et al
.
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
.
Nature
.
2003
;
423
(
6939
):
550
-
555
.
34.
Xiong
X
,
Tao
R
,
DePinho
RA
,
Dong
XC
.
Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis
.
PLoS One
.
2013
;
8(8)
:
e74340
.
35.
Dong
XC
,
Copps
KD
,
Guo
S
, et al
.
Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation
.
Cell Metab
.
2008
;
8
(
1
):
65
-
76
.
36.
Haeusler
RA
,
Kaestner
KH
,
Accili
D
.
FoxOs function synergistically to promote glucose production
.
J Biol Chem
.
2010
;
285
(
46
):
35245
-
35248
.
37.
Allen
DL
,
Unterman
TG
.
Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors
.
Am J Physiol Cell Physiol
.
2007
;
292
(
1
):
C188
-
C199
.
38.
Gomis
RR
,
Alarcon
C
,
He
W
, et al
.
A FoxO-Smad synexpression group in human keratinocytes
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
34
):
12747
-
12752
.
39.
Truksa
J
,
Lee
P
,
Beutler
E
.
Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter are critical for BMP, SMAD1, and HJV responsiveness
.
Blood
.
2009
;
113
(
3
):
688
-
695
.
40.
Liao
W
,
Yang
W
,
Shen
Z
, et al
.
Heme oxygenase-1 regulates ferrous iron and Foxo1 in control of hepatic gluconeogenesis
.
Diabetes
.
2021
;
70
(
3
):
696
-
709
.
41.
Ma
W
,
Feng
Y
,
Jia
L
, et al
.
Dietary iron modulates glucose and lipid homeostasis in diabetic mice
.
Biol Trace Elem Res
.
2019
;
189
(
1
):
194
-
200
.
42.
Hilton
C
,
Sabaratnam
R
,
Drakesmith
H
,
Karpe
F
.
Iron, glucose and fat metabolism and obesity: an intertwined relationship
.
Int J Obes
.
2023
;
47
(
7
):
554
-
563
.
43.
Gabrielsen
JS
,
Gao
Y
,
Simcox
JA
, et al
.
Adipocyte iron regulates adiponectin and insulin sensitivity
.
J Clin Invest
.
2012
;
122
(
10
):
3529
-
3540
.
44.
Latour
C
,
Kautz
L
,
Besson-Fournier
C
, et al
.
Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin
.
Hepatology
.
2014
;
59
(
2
):
683
-
694
.
45.
Macchi
C
,
Steffani
L
,
Oleari
R
, et al
.
Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms
.
Mol Cell Endocrinol
.
2017
;
454
:
135
-
145
.
46.
McDermott
JH
,
Walsh
CH
.
Hypogonadism in hereditary hemochromatosis
.
J Clin Endocrinol Metab
.
2005
;
90
(
4
):
2451
-
2455
.
You do not currently have access to this content.
Sign in via your Institution