Abstract

Large granular lymphocytic leukemia (LGLL) is a rare lymphoproliferative chronic disorder characterized by expansion of either T or natural killer (NK) cytotoxic cells. In contrast to Epstein-Barr virus–induced aggressive NK-LGLL, chronic T-LGLL and NK-LGLL are indolent diseases affecting older patients with a median age of 66.5 years. LGLL is frequently associated with autoimmune disorders, most frequently rheumatoid arthritis. An auto-/alloantigen is tentatively implicated in disease initiation. Large granular lymphocyte expansion is then triggered by proinflammatory cytokines such as interleukin-15, macrophage inflammatory protein 1 (MIP-1), and RANTES (regulated upon activation, normal T cell expressed, and secreted). This proinflammatory environment contributes to deregulation of proliferative and apoptotic pathways. After the initial description of the JAK-STAT pathway signaling activation in the majority of patients, recurrent STAT3 gain-of-function mutations have been reported. The JAK-STAT pathway plays a key role in LGL pathogenesis by promoting survival, proliferation, and cytotoxicity. Several recent advances have been made toward understanding the molecular landscapes of T- and NK-LGLL, identifying multiple recurrent mutations affecting the epigenome, such as TET2 or KMT2D, and cross talk with the immune microenvironment, such as CCL22. Despite an indolent course, published series suggest that the majority of patients eventually need treatment. However, it is noteworthy that many patients may have a long-term observation period without ever requiring therapy. Treatments rely upon immunosuppressive drugs, namely cyclophosphamide, methotrexate, and cyclosporine. Recent advances have led to the development of targeted approaches, including JAK-STAT inhibitors, cytokine targeting, and hypomethylating agents, opening new developments in a still-incurable disease.

1.
Dinmohamed
AG
,
Brink
M
,
Visser
O
,
Jongen-Lavrencic
M
.
Population-based analyses among 184 patients diagnosed with large granular lymphocyte leukemia in the Netherlands between 2001 and 2013
.
Leukemia
.
2016
;
30
(
6
):
1449
-
1451
.
2.
Bareau
B
,
Rey
J
,
Hamidou
M
, et al
.
Analysis of a French cohort of patients with large granular lymphocyte leukemia: a report on 229 cases
.
Haematologica
.
2010
;
95
(
9
):
1534
-
1541
.
3.
Poullot
E
,
Zambello
R
,
Leblanc
F
, et al
.
Chronic natural killer lymphoproliferative disorders: characteristics of an international cohort of 70 patients
.
Ann Oncol
.
2014
;
25
(
10
):
2030
-
2035
.
4.
Barila
G
,
Grassi
A
,
Cheon
H
, et al
.
Tgammadelta LGLL identifies a subset with more symptomatic disease: analysis of an international cohort of 137 patients
.
Blood
.
2023
;
141
(
9
):
1036
-
1046
.
5.
Nash
R
,
McSweeney
P
,
Zambello
R
,
Semenzato
G
,
Loughran
TP
.
Clonal studies of CD3- lymphoproliferative disease of granular lymphocytes
.
Blood
.
1993
;
81
(
9
):
2363
-
2368
.
6.
Loughran
TP
,
Kadin
ME
,
Starkebaum
G
, et al
.
Leukemia of large granular lymphocytes: association with clonal chromosomal abnormalities and autoimmune neutropenia, thrombocytopenia, and hemolytic anemia
.
Ann Intern Med
.
1985
;
102
(
2
):
169
-
175
.
7.
Koskela
HL
,
Eldfors
S
,
Ellonen
P
, et al
.
Somatic STAT3 mutations in large granular lymphocytic leukemia
.
N Engl J Med
.
2012
;
366
(
20
):
1905
-
1913
.
8.
Alaggio
R
,
Amador
C
,
Anagnostopoulos
I
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1720
-
1748
.
9.
Campo
E
,
Jaffe
ES
,
Cook
JR
, et al
.
The International Consensus classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee
.
Blood
.
2022
;
140
(
11
):
1229
-
1253
.
10.
Zambello
R
,
Berno
T
,
Cannas
G
, et al
.
Phenotypic and functional analyses of dendritic cells in patients with lymphoproliferative disease of granular lymphocytes (LDGL)
.
Blood
.
2005
;
106
(
12
):
3926
-
3931
.
11.
Li
W
,
Yang
L
,
Harris
RS
, et al
.
Retrovirus insertion site analysis of LGL leukemia patient genomes
.
BMC Med Genomics
.
2019
;
12
(
1
):
88
.
12.
El Hussein
S
,
Medeiros
LJ
,
Khoury
JD
.
Aggressive NK cell leukemia: current state of the art
.
Cancers (Basel)
.
2020
;
12
(
10
):
2900
.
13.
Pellenz
M
,
Zambello
R
,
Semenzato
G
,
Loughran
TP
.
Detection of Epstein-Barr virus by PCR analyses in lymphoproliferative disease of granular lymphocytes
.
Leuk Lymphoma
.
1996
;
23
(
3-4
):
371
-
374
.
14.
Poullot
E
,
Bouscary
D
,
Guyader
D
, et al
.
Large granular lymphocyte leukemia associated with hepatitis C virus infection and B cell lymphoma: improvement after antiviral therapy
.
Leuk Lymphoma
.
2013
;
54
(
8
):
1797
-
1799
.
15.
Boveri
E
,
Riboni
R
,
Antico
P
,
Malacrida
A
,
Pastorini
A
.
CD3+ T large granular lymphocyte leukaemia in a HIV+, HCV+, HBV+ patient
.
Virchows Arch
.
2009
;
454
(
3
):
349
-
351
.
16.
Huuhtanen
J
,
Bhattacharya
D
,
Lonnberg
T
, et al
.
Single-cell characterization of leukemic and non-leukemic immune repertoires in CD8(+) T-cell large granular lymphocytic leukemia
.
Nat Commun
.
2022
;
13
(
1
):
1981
.
17.
Gao
S
,
Wu
Z
,
Arnold
B
, et al
.
Single-cell RNA sequencing coupled to TCR profiling of large granular lymphocyte leukemia T cells
.
Nat Commun
.
2022
;
13
(
1
):
1982
.
18.
Olson
KC
,
Moosic
KB
,
Jones
MK
, et al
.
Large granular lymphocyte leukemia serum and corresponding hematological parameters reveal unique cytokine and sphingolipid biomarkers and associations with STAT3 mutations
.
Cancer Med
.
2020
;
9
(
18
):
6533
-
6549
.
19.
Mishra
A
,
Liu
S
,
Sams
GH
, et al
.
Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation
.
Cancer Cell
.
2012
;
22
(
5
):
645
-
655
.
20.
Yang
J
,
Liu
X
,
Nyland
SB
, et al
.
Platelet-derived growth factor mediates survival of leukemic large granular lymphocytes via an autocrine regulatory pathway
.
Blood
.
2010
;
115
(
1
):
51
-
60
.
21.
Kothapalli
R
,
Nyland
S
,
Kusmartseva
I
,
Bailey
R
,
McKeown
T
,
Loughran
T
.
Constitutive production of proinflammatory cytokines RANTES, MIP-1β and IL-18 characterizes LGL leukemia
.
Int J Oncol
.
2005
;
26
(
2
):
529
-
535
.
22.
Isabelle
C
,
Boles
A
,
Chakravarti
N
,
Porcu
P
,
Brammer
J
,
Mishra
A
.
Cytokines in the pathogenesis of large granular lymphocytic leukemia
.
Front Oncol
.
2022
;
12
:
849917
.
23.
Chen
J
,
Petrus
M
,
Bamford
R
, et al
.
Increased serum soluble IL-15Ralpha levels in T-cell large granular lymphocyte leukemia
.
Blood
.
2012
;
119
(
1
):
137
-
143
.
24.
Zhang
R
,
Shah
MV
,
Yang
J
, et al
.
Network model of survival signaling in large granular lymphocyte leukemia
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
42
):
16308
-
16313
.
25.
Caligiuri
MA
.
Human natural killer cells
.
Blood
.
2008
;
112
(
3
):
461
-
469
.
26.
Zambello
R
,
Facco
M
,
Trentin
L
, et al
.
Interleukin-15 triggers the proliferation and cytotoxicity of granular lymphocytes in patients with lymphoproliferative disease of granular lymphocytes
.
Blood
.
1997
;
89
(
1
):
201
-
211
.
27.
Fehniger
TA
,
Suzuki
K
,
Ponnappan
A
, et al
.
Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells
.
J Exp Med
.
2001
;
193
(
2
):
219
-
231
.
28.
Teramo
A
,
Gattazzo
C
,
Passeri
F
, et al
.
Intrinsic and extrinsic mechanisms contribute to maintain the JAK/STAT pathway aberrantly activated in T-type large granular lymphocyte leukemia
.
Blood
.
2013
;
121
(
19
):
3843
. S1.
29.
Kim
D
,
Park
G
,
Huuhtanen
J
, et al
.
STAT3 activation in large granular lymphocyte leukemia is associated with cytokine signaling and DNA hypermethylation
.
Leukemia
.
2021
;
35
(
12
):
3430
-
3443
.
30.
Meynier
S
,
Rieux-Laucat
F
.
FAS and RAS related apoptosis defects: from autoimmunity to leukemia
.
Immunol Rev
.
2019
;
287
(
1
):
50
-
61
.
31.
Lamy
T
,
Liu
JH
,
Landowski
TH
,
Dalton
WS
,
Loughran
TP
.
Dysregulation of CD95/CD95 ligand-apoptotic pathway in CD3(+) large granular lymphocyte leukemia
.
Blood
.
1998
;
92
(
12
):
4771
-
4777
.
32.
Cheon
H
,
Xing
JC
,
Moosic
KB
, et al
.
Genomic landscape of TCRalphabeta and TCRgammadelta T-large granular lymphocyte leukemia
.
Blood
.
2022
;
139
(
20
):
3058
-
3072
.
33.
Yang
J
,
Epling-Burnette
PK
,
Painter
JS
, et al
.
Antigen activation and impaired Fas-induced death-inducing signaling complex formation in T-large-granular lymphocyte leukemia
.
Blood
.
2008
;
111
(
3
):
1610
-
1616
.
34.
O'Shea
JJ
,
Plenge
R
.
JAK and STAT signaling molecules in immunoregulation and immune-mediated disease
.
Immunity
.
2012
;
36
(
4
):
542
-
550
.
35.
Epling-Burnette
PK
,
Liu
JH
,
Catlett-Falcone
R
, et al
.
Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression
.
J Clin Invest
.
2001
;
107
(
3
):
351
-
362
.
36.
Jerez
A
,
Clemente
MJ
,
Makishima
H
, et al
.
STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia
.
Blood
.
2012
;
120
(
15
):
3048
-
3057
.
37.
Lamy
T
,
Pastoret
C
,
Houot
R
, et al
.
Prospective, multicentric phase II randomized trial comparing the efficacy of methotrexate or cyclophosphamide in large granular lymphocytic leukemia: a French National Study. Report on the interim analysis
.
Blood
.
2019
;
134
(
suppl 1
):
1545-1545
.
38.
Pastoret
C
,
Desmots
F
,
Drillet
G
, et al
.
Linking the KIR phenotype with STAT3 and TET2 mutations to identify chronic lymphoproliferative disorders of NK cells
.
Blood
.
2021
;
137
(
23
):
3237
-
3250
.
39.
Rajala
HL
,
Olson
T
,
Clemente
MJ
, et al
.
The analysis of clonal diversity and therapy responses using STAT3 mutations as a molecular marker in large granular lymphocytic leukemia
.
Haematologica
.
2015
;
100
(
1
):
91
-
99
.
40.
Munoz-Garcia
N
,
Jara-Acevedo
M
,
Caldas
C
, et al
.
STAT3 and STAT5B mutations in T/NK-cell chronic lymphoproliferative disorders of large granular lymphocytes (LGL): association with disease features
.
Cancers (Basel)
.
2020
;
12
(
12
):
3508
.
41.
Mackie
J
,
Ma
CS
,
Tangye
SG
,
Guerin
A
.
The ups and downs of STAT3 function: too much, too little and human immune dysregulation
.
Clin Exp Immunol
.
2023
;
212
(
2
):
107
-
116
.
42.
Masle-Farquhar
E
,
Jackson
KJL
,
Peters
TJ
, et al
.
STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2D(hi) CD8(+) T cell dysregulation and accumulation
.
Immunity
.
2022
;
55
(
12
):
2386
-
2404.e8
.
43.
Bhattacharya
D
,
Teramo
A
,
Gasparini
VR
, et al
.
Identification of novel STAT5B mutations and characterization of TCRbeta signatures in CD4+ T-cell large granular lymphocyte leukemia
.
Blood Cancer J
.
2022
;
12
(
2
):
31
.
44.
Clemente
MJ
,
Przychodzen
B
,
Jerez
A
, et al
.
Deep sequencing of the T-cell receptor repertoire in CD8+ T-large granular lymphocyte leukemia identifies signature landscapes
.
Blood
.
2013
;
122
(
25
):
4077
-
4085
.
45.
Garrido
P
,
Ruiz-Cabello
F
,
Barcena
P
, et al
.
Monoclonal TCR-Vbeta13.1+/CD4+/NKa+/CD8-/+dim T-LGL lymphocytosis: evidence for an antigen-driven chronic T-cell stimulation origin
.
Blood
.
2007
;
109
(
11
):
4890
-
4898
.
46.
Rajala
HL
,
Eldfors
S
,
Kuusanmaki
H
, et al
.
Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia
.
Blood
.
2013
;
121
(
22
):
4541
-
4550
.
47.
Andersson
EI
,
Rajala
HL
,
Eldfors
S
, et al
.
Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation
.
Blood Cancer J
.
2013
;
3
(
12
):
e168
.
48.
Assmann
J
,
Leon
LG
,
Stavast
CJ
, et al
.
miR-181a is a novel player in the STAT3-mediated survival network of TCRalphabeta+ CD8+ T large granular lymphocyte leukemia
.
Leukemia
.
2022
;
36
(
4
):
983
-
993
.
49.
Mariotti
B
,
Calabretto
G
,
Rossato
M
, et al
.
Identification of a miR-146b-Fas ligand axis in the development of neutropenia in T large granular lymphocyte leukemia
.
Haematologica
.
2020
;
105
(
5
):
1351
-
1360
.
50.
Epling-Burnette
PK
,
Bai
F
,
Wei
S
, et al
.
ERK couples chronic survival of NK cells to constitutively activated Ras in lymphoproliferative disease of granular lymphocytes (LDGL)
.
Oncogene
.
2004
;
23
(
57
):
9220
-
9229
.
51.
Schade
AE
,
Powers
JJ
,
Wlodarski
MW
,
Maciejewski
JP
.
Phosphatidylinositol-3-phosphate kinase pathway activation protects leukemic large granular lymphocytes from undergoing homeostatic apoptosis
.
Blood
.
2006
;
107
(
12
):
4834
-
4840
.
52.
Gasparini
VR
,
Binatti
A
,
Coppe
A
, et al
.
A high definition picture of somatic mutations in chronic lymphoproliferative disorder of natural killer cells
.
Blood Cancer J
.
2020
;
10
(
4
):
42
.
53.
Olson
TL
,
Cheon
H
,
Xing
JC
, et al
.
Frequent somatic TET2 mutations in chronic NK-LGL leukemia with distinct patterns of cytopenias
.
Blood
.
2021
;
138
(
8
):
662
-
673
.
54.
Buscarlet
M
,
Provost
S
,
Zada
YF
, et al
.
Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A
.
Blood
.
2018
;
132
(
3
):
277
-
280
.
55.
Leca
J
,
Lemonnier
F
,
Meydan
C
, et al
.
IDH2 and TET2 mutations synergize to modulate T follicular helper cell functional interaction with the AITL microenvironment
.
Cancer Cell
.
2023
;
41
(
2
):
323
-
339.e10
.
56.
Kulasekararaj
AG
,
Jiang
J
,
Smith
AE
, et al
.
Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome
.
Blood
.
2014
;
124
(
17
):
2698
-
2704
.
57.
Ogbue
OD
,
Kewan
T
,
Bahaj
WS
,
Gurnari
C
,
Visconte
V
,
Maciejewski
JP
.
New approaches to idiopathic neutropenia in the era of clonal hematopoiesis
.
Exp Hematol Oncol
.
2023
;
12
(
1
):
42
.
58.
Boy
M
,
Bisio
V
,
Zhao
LP
, et al
.
Myelodysplastic syndrome associated TET2 mutations affect NK cell function and genome methylation
.
Nat Commun
.
2023
;
14
(
1
):
588
.
59.
Chan
HW
,
Kurago
ZB
,
Stewart
CA
, et al
.
DNA methylation maintains allele-specific KIR gene expression in human natural killer cells
.
J Exp Med
.
2003
;
197
(
2
):
245
-
255
.
60.
Julia
E
,
Mareschal
S
,
Chebel
A
, et al
.
Chromatin accessibility profiling to increase diagnostic accuracy and refine cell-of-origin classification of mature T-cell lymphomas
.
Blood
.
2021
;
138
(
suppl 1
):
809-809
.
61.
Baer
C
,
Kimura
S
,
Rana
MS
, et al
.
CCL22 mutations drive natural killer cell lymphoproliferative disease by deregulating microenvironmental crosstalk
.
Nat Genet
.
2022
;
54
(
5
):
637
-
648
.
62.
Vicenzetto
C
,
Gasparini
VR
,
Barila
G
, et al
.
Pro-inflammatory cells sustain leukemic clonal expansion in T-cell large granular lymphocyte leukemia
.
Haematologica
.
2024
;
109
(
1
):
163
-
174
.
63.
Daou
H
,
Hatch
LA
,
Weinkle
A
, et al
.
CD8-positive cutaneous lymphoproliferation associated with large granular lymphocyte leukemia in a patient with X-linked agammaglobulinemia
.
J Cutan Pathol
.
2021
;
48
(
4
):
567
-
571
.
64.
Isnard
P
,
Linster
C
,
Bruneau
J
, et al
.
Natural killer cell large granular lymphocyte leukemia-induced glomerulonephritis
.
Kidney Int Rep
.
2021
;
6
(
4
):
1174
-
1177
.
65.
Noguchi
M
,
Yoshita
M
,
Sakai
K
, et al
.
Peripheral neuropathy associated with chronic natural killer cell lymphocytosis
.
J Neurol Sci
.
2005
;
232
(
1-2
):
119
-
122
.
66.
Oshimi
K
.
Progress in understanding and managing natural killer-cell malignancies
.
Br J Haematol
.
2007
;
139
(
4
):
532
-
544
.
67.
Lewis
NE
,
Zhou
T
,
Dogan
A
.
Biology and genetics of extranodal mature T-cell and NKcell lymphomas and lymphoproliferative disorders
.
Haematologica
.
2023
;
108
(
12
):
3261
-
3277
.
68.
Drillet
G
,
Pastoret
C
,
Moignet
A
,
Lamy
T
,
Marchand
T
.
Large granular lymphocyte leukemia: an indolent clonal proliferative disease associated with an array of various immunologic disorders
.
Rev Med Interne
.
2023
;
44
(
6
):
295
-
306
.
69.
Marchand
T
,
Lamy
T
.
The complex relationship between large granular lymphocyte leukemia and rheumatic disease
.
Expert Rev Clin Immunol
.
2023
;
20
(
3
):
291
-
303
.
70.
Sanikommu
SR
,
Clemente
MJ
,
Chomczynski
P
, et al
.
Clinical features and treatment outcomes in large granular lymphocytic leukemia (LGLL)
.
Leuk Lymphoma
.
2018
;
59
(
2
):
416
-
422
.
71.
Dong
N
,
Castillo Tokumori
F
,
Isenalumhe
L
, et al
.
Large granular lymphocytic leukemia - a retrospective study of 319 cases
.
Am J Hematol
.
2021
;
96
(
7
):
772
-
780
.
72.
Gorodetskiy
V
,
Vasilyev
V
,
Sidorova
Y
, et al
.
Clinical study of the relationship between Sjogren syndrome and T-cell large granular lymphocytic leukemia: single-center experience
.
Int J Mol Sci
.
2022
;
23
(
21
):
13345
.
73.
Cherel
B
,
Humbert
M
,
LeBlanc
FR
, et al
.
Large granular lymphocyte leukemia and precapillary pulmonary hypertension
.
Chest
.
2020
;
158
(
6
):
2602
-
2609
.
74.
Audemard
A
,
Lamy
T
,
Bareau
B
, et al
.
Vasculitis associated with large granular lymphocyte (LGL) leukemia: presentation and treatment outcomes of 11 cases
.
Semin Arthritis Rheum
.
2013
;
43
(
3
):
362
-
366
.
75.
Viny
AD
,
Lichtin
A
,
Pohlman
B
,
Loughran
T
,
Maciejewski
J
.
Chronic B-cell dyscrasias are an important clinical feature of T-LGL leukemia
.
Leuk Lymphoma
.
2008
;
49
(
5
):
932
-
938
.
76.
Teramo
A
,
Barila
G
,
Calabretto
G
, et al
.
STAT3 mutation impacts biological and clinical features of T-LGL leukemia
.
Oncotarget
.
2017
;
8
(
37
):
61876
-
61889
.
77.
Barila
G
,
Teramo
A
,
Calabretto
G
, et al
.
Stat3 mutations impact on overall survival in large granular lymphocyte leukemia: a single-center experience of 205 patients
.
Leukemia
.
2020
;
34
(
4
):
1116
-
1124
.
78.
Liu
JH
,
Wei
S
,
Lamy
T
, et al
.
Chronic neutropenia mediated by Fas ligand
.
Blood
.
2000
;
95
(
10
):
3219
-
3222
.
79.
Gabe
C
,
Liu
Y
,
Duncan
J
, et al
.
Prevalence and significance of large granular lymphocytes in patients with immune thrombocytopenia
.
Platelets
.
2023
;
34
(
1
):
2144194
.
80.
Semenzato
G
,
Zambello
R
,
Starkebaum
G
,
Oshimi
K
,
Loughran
TP
.
The lymphoproliferative disease of granular lymphocytes: updated criteria for diagnosis
.
Blood
.
1997
;
89
(
1
):
256
-
260
.
81.
Sandberg
Y
,
Almeida
J
,
Gonzalez
M
, et al
.
TCRgammadelta+ large granular lymphocyte leukemias reflect the spectrum of normal antigen-selected TCRgammadelta+ T-cells
.
Leukemia
.
2006
;
20
(
3
):
505
-
513
.
82.
Bourgault-Rouxel
AS
,
Loughran
TP
,
Zambello
R
, et al
.
Clinical spectrum of gammadelta+ T cell LGL leukemia: analysis of 20 cases
.
Leuk Res
.
2008
;
32
(
1
):
45
-
48
.
83.
Lima
M
,
Almeida
J
,
Dos Anjos Teixeira
M
, et al
.
TCRalphabeta+/CD4+ large granular lymphocytosis: a new clonal T-cell lymphoproliferative disorder
.
Am J Pathol
.
2003
;
163
(
2
):
763
-
771
.
84.
Kuwahara
N
,
Kodaka
T
,
Zushi
Y
, et al
.
T-cell large granular lymphocytic (LGL) leukemia consists of CD4(+)/CD8(dim) and CD4(-)/CD8(+) LGL populations in association with immune thrombocytopenia, autoimmune neutropenia, and monoclonal B-cell lymphocytosis
.
J Clin Exp Hematop
.
2019
;
59
(
4
):
202
-
206
.
85.
Messmer
M
,
Wake
L
,
Tsai
HL
,
Jones
RJ
,
Varadhan
R
,
Wagner-Johnston
N
.
Large granular lymphocytosis with cytopenias after allogeneic blood or marrow transplantation: clinical characteristics and response to immunosuppressive therapy
.
Transplant Cell Ther
.
2021
;
27
(
3
):
260.e1
-
260.e6
.
86.
Awada
H
,
Mahfouz
RZ
,
Durrani
J
, et al
.
Large granular lymphocytic leukaemia after solid organ and haematopoietic stem cell transplantation
.
Br J Haematol
.
2020
;
189
(
2
):
318
-
322
.
87.
DerSimonian
H
,
Sugita
M
,
Glass
DN
, et al
.
Clonal V alpha 12.1+ T cell expansions in the peripheral blood of rheumatoid arthritis patients
.
J Exp Med
.
1993
;
177
(
6
):
1623
-
1631
.
88.
Morice
WG
,
Jevremovic
D
,
Hanson
CA
.
The expression of the novel cytotoxic protein granzyme M by large granular lymphocytic leukaemias of both T-cell and NK-cell lineage: an unexpected finding with implications regarding the pathobiology of these disorders
.
Br J Haematol
.
2007
;
137
(
3
):
237
-
239
.
89.
Semenzato
G
,
Zambello
R
,
Starkebaum
G
,
Oshimi
K
,
Loughran
TP
.
The lymphoproliferative disease of granular lymphocytes: updated criteria for diagnosis
.
Blood
.
1997
;
89
(
1
):
256
-
260
.
90.
Langerak
AW
,
van Den Beemd
R
,
Wolvers-Tettero
IL
, et al
.
Molecular and flow cytometric analysis of the Vbeta repertoire for clonality assessment in mature TCRalphabeta T-cell proliferations
.
Blood
.
2001
;
98
(
1
):
165
-
173
.
91.
O'Keefe
CL
,
Plasilova
M
,
Wlodarski
M
, et al
.
Molecular analysis of TCR clonotypes in LGL: a clonal model for polyclonal responses
.
J Immunol
.
2004
;
172
(
3
):
1960
-
1969
.
92.
Munoz-Garcia
N
,
Moran-Plata
FJ
,
Villamor
N
, et al
.
High-sensitive TRBC1-based flow cytometric assessment of T-cell clonality in Talphabeta-large granular lymphocytic leukemia
.
Cancers (Basel)
.
2022
;
14
(
2
):
408
.
93.
Nguyen
PC
,
Nguyen
T
,
Wilson
C
, et al
.
Evaluation of T-cell clonality by anti-TRBC1 antibody-based flow cytometry and correlation with T-cell receptor sequencing
.
Br J Haematol
.
2024
;
204
(
3
):
910
-
920
.
94.
Shi
M
,
Olteanu
H
,
Jevremovic
D
, et al
.
T-cell clones of uncertain significance are highly prevalent and show close resemblance to T-cell large granular lymphocytic leukemia. Implications for laboratory diagnostics
.
Mod Pathol
.
2020
;
33
(
10
):
2046
-
2057
.
95.
Lanier
LL
,
Le
AM
,
Civin
CI
,
Loken
MR
,
Phillips
JH
.
The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes
.
J Immunol
.
1986
;
136
(
12
):
4480
-
4486
.
96.
Cooper
MA
,
Fehniger
TA
,
Turner
SC
, et al
.
Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset
.
Blood
.
2001
;
97
(
10
):
3146
-
3151
.
97.
Zambello
R
,
Falco
M
,
Della Chiesa
M
, et al
.
Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes
.
Blood
.
2003
;
102
(
5
):
1797
-
1805
.
98.
Epling-Burnette
PK
,
Painter
JS
,
Chaurasia
P
, et al
.
Dysregulated NK receptor expression in patients with lymphoproliferative disease of granular lymphocytes
.
Blood
.
2004
;
103
(
9
):
3431
-
3439
.
99.
Moignet
A
,
Hasanali
Z
,
Zambello
R
, et al
.
Cyclophosphamide as a first-line therapy in LGL leukemia
.
Leukemia
.
2014
;
28
(
5
):
1134
-
1136
.
100.
Osuji
N
,
Matutes
E
,
Tjonnfjord
G
, et al
.
T-cell large granular lymphocyte leukemia: a report on the treatment of 29 patients and a review of the literature
.
Cancer
.
2006
;
107
(
3
):
570
-
578
.
101.
Loughran
TP
,
Zickl
L
,
Olson
TL
, et al
.
Immunosuppressive therapy of LGL leukemia: prospective multicenter phase II study by the Eastern Cooperative Oncology Group (E5998)
.
Leukemia
.
2015
;
29
(
4
):
886
-
894
.
102.
Lamy
T
,
Loughran
TP
.
How I treat LGL leukemia
.
Blood
.
2011
;
117
(
10
):
2764
-
2774
.
103.
Braunstein
Z
,
Mishra
A
,
Staub
A
,
Freud
AG
,
Porcu
P
,
Brammer
JE
.
Clinical outcomes in T-cell large granular lymphocytic leukaemia: prognostic factors and treatment response
.
Br J Haematol
.
2021
;
192
(
3
):
484
-
493
.
104.
Dumitriu
B
,
Ito
S
,
Feng
X
, et al
.
Alemtuzumab in T-cell large granular lymphocytic leukaemia: interim results from a single-arm, open-label, phase 2 study
.
Lancet Haematol
.
2016
;
3
(
1
):
e22
-
e29
.
105.
Zaja
F
,
Baldini
L
,
Ferreri
AJ
, et al
.
Bendamustine salvage therapy for T cell neoplasms
.
Ann Hematol
.
2013
;
92
(
9
):
1249
-
1254
.
106.
Marchand
T
,
Lamy
T
,
Finel
H
, et al
.
Hematopoietic stem cell transplantation for T-cell large granular lymphocyte leukemia: a retrospective study of the European Society for Blood and Marrow Transplantation
.
Leukemia
.
2016
;
30
(
5
):
1201
-
1204
.
107.
Moignet
A
,
Pastoret
C
,
Cartron
G
,
Coppo
P
,
Lamy
T
.
Ruxolitinib for refractory large granular lymphocyte leukemia
.
Am J Hematol
.
2021
;
96
(
10
):
E368
-
E370
.
108.
Moskowitz
A
,
Rahman
J
,
Ganesan
N
, et al
.
Ruxolitinib promotes clinical responses in large granular lymphocytic leukemia via suppression of JAK/STAT-dependent inflammatory cascades
.
Blood
.
2023
;
142
(
suppl 1
):
183-183
.
109.
Moskowitz
AJ
,
Ghione
P
,
Jacobsen
E
, et al
.
A phase 2 biomarker-driven study of ruxolitinib demonstrates effectiveness of JAK/STAT targeting in T-cell lymphomas
.
Blood
.
2021
;
138
(
26
):
2828
-
2837
.
110.
Marchand
T
,
Pastoret
C
,
Damaj
G
, et al
.
Efficacy of ruxolitinib in the treatment of relapsed/refractory large granular lymphocytic leukaemia
.
Br J Haematol
.
Published online 19 April 2024
.
111.
Bilori
B
,
Thota
S
,
Clemente
MJ
, et al
.
Tofacitinib as a novel salvage therapy for refractory T-cell large granular lymphocytic leukemia
.
Leukemia
.
2015
;
29
(
12
):
2427
-
2429
.
112.
Wang
TT
,
Yang
J
,
Zhang
Y
, et al
.
IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective gamma-chain cytokines, decreases leukemic T-cell viability
.
Leukemia
.
2019
;
33
(
5
):
1243
-
1255
.
113.
Brammer
JE
,
Ballen
K
,
Sokol
L
, et al
.
Effective treatment with the selective cytokine inhibitor BNZ-1 reveals the cytokine dependency of T-LGL leukemia
.
Blood
.
2023
;
142
(
15
):
1271
-
1280
.
114.
Zawit
M
,
Gurnari
C
,
Pagliuca
S
,
Awada
H
,
Maciejewski
JP
,
Saunthararajah
Y
.
A non-cytotoxic regimen of decitabine to treat refractory T-cell large granular lymphocytic leukemia
.
Clin Case Rep
.
2021
;
9
(
9
):
e04533
.
115.
Loughran
TP
.
Clonal diseases of large granular lymphocytes
.
Blood
.
1993
;
82
(
1
):
1
-
14
.
116.
Zhu
Y
,
Gao
Q
,
Hu
J
,
Liu
X
,
Guan
D
,
Zhang
F
.
Clinical features and treatment outcomes in patients with T-cell large granular lymphocytic leukemia: A single-institution experience
.
Leuk Res
.
2020
;
90
:
106299
.
You do not currently have access to this content.
Sign in via your Institution