• Intracellular RBC polymorphisms can facilitate alloimmunization against completely unrelated RBC surface antigens.

  • Immune responses to undetected intracellular polymorphisms may explain higher alloimmunization rates among some transfusion recipients.

Antibodies against red blood cell (RBC) alloantigens can increase morbidity and mortality among transfusion recipients. However, alloimmunization rates can vary dramatically, as some patients never generate alloantibodies after transfusion, whereas others not only become alloimmunized but may also be prone to generating additional alloantibodies after subsequent transfusion. Previous studies suggested that CD4 T–cell responses that drive alloantibody formation recognize the same alloantigen engaged by B cells. However, because RBCs express numerous antigens, both internally and externally, it is possible that CD4 T–cell responses directed against intracellular antigens may facilitate subsequent alloimmunization against a surface RBC antigen. Here, we show that B cells can acquire intracellular antigens from RBCs. Using a mouse model of donor RBCs expressing 2 distinct alloantigens, we demonstrate that immune priming to an intracellular antigen, which would not be detected by any currently used RBC compatibility assays, can directly influence alloantibody formation after exposure to a subsequent distinct surface RBC alloantigen. These findings suggest a previously underappreciated mechanism whereby transfusion recipient responders may exhibit an increased rate of alloimmunization because of prior immune priming toward intracellular antigens.

1.
Yazdanbakhsh
K
,
Ware
RE
,
Noizat-Pirenne
F
.
Red blood cell alloimmunization in sickle cell disease: pathophysiology, risk factors, and transfusion management
.
Blood
.
2012
;
120
(
3
):
528
-
537
.
2.
Nickel
RS
,
Hendrickson
JE
,
Fasano
RM
, et al
.
Impact of red blood cell alloimmunization on sickle cell disease mortality: a case series
.
Transfusion
.
2016
;
56
(
1
):
107
-
114
.
3.
Telen
MJ
,
Afenyi-Annan
A
,
Garrett
ME
,
Combs
MR
,
Orringer
EP
,
Ashley-Koch
AE
.
Alloimmunization in sickle cell disease: changing antibody specificities and association with chronic pain and decreased survival
.
Transfusion
.
2015
;
55
(
6 Pt 2
):
1378
-
1387
.
4.
Hillyer
CD
,
Shaz
BH
,
Winkler
AM
,
Reid
M
.
Integrating molecular technologies for red blood cell typing and compatibility testing into blood centers and transfusion services
.
Transfus Med Rev
.
2008
;
22
(
2
):
117
-
132
.
5.
Rosse
WF
,
Gallagher
D
,
Kinney
TR
, et al
.
Transfusion and alloimmunization in sickle cell disease. the cooperative study of sickle cell disease
.
Blood
.
1990
;
76
(
7
):
1431
-
1437
.
6.
Vichinsky
EP
,
Earles
A
,
Johnson
RA
,
Hoag
MS
,
Williams
A
,
Lubin
B
.
Alloimmunization in sickle cell anemia and transfusion of racially unmatched blood
.
N Engl J Med
.
1990
;
322
(
23
):
1617
-
1621
.
7.
Chonat
S
,
Arthur
CM
,
Zerra
PE
, et al
.
Challenges in preventing and treating hemolytic complications associated with red blood cell transfusion
.
Transfus Clin Biol
.
2019
;
26
(
2
):
130
-
134
.
8.
Chonat
S
,
Graciaa
S
,
Shin
HS
, et al
.
Eculizumab for complement mediated thrombotic microangiopathy in sickle cell disease
.
Haematologica
.
2020
;
105
(
12
):
2887
-
2891
.
9.
Chonat
S
,
Quarmyne
MO
,
Bennett
CM
, et al
.
Contribution of alternative complement pathway to delayed hemolytic transfusion reaction in sickle cell disease
.
Haematologica
.
2018
;
103
(
10
):
e483
-
e485
.
10.
Roumenina
LT
,
Bartolucci
P
,
Pirenne
F
.
The role of Complement in post-transfusion hemolysis and hyperhemolysis reaction
.
Transfus Med Rev
.
2019
;
33
(
4
):
225
-
230
.
11.
Dumas
G
,
Habibi
A
,
Onimus
T
, et al
.
Eculizumab salvage therapy for delayed hemolysis transfusion reaction in sickle cell disease patients
.
Blood
.
2016
;
127
(
8
):
1062
-
1064
.
12.
Higgins
JM
,
Sloan
SR
.
Stochastic modeling of human RBC alloimmunization: evidence for a distinct population of immunologic responders
.
Blood
.
2008
;
112
(
6
):
2546
-
2553
.
13.
Schonewille
H
,
Haak
HL
,
van Zijl
AM
.
Alloimmunization after blood transfusion in patients with hematologic and oncologic diseases
.
Transfusion
.
1999
;
39
(
7
):
763
-
771
.
14.
Arthur
CM SS
.
The development and consequences of RBC alloimmunization
.
Annu Rev Pathol Mech Dis
.
2023
;
18
:
537
-
564
.
15.
Yazdanbakhsh
K
.
Immunoregulatory networks in sickle cell alloimmunization
.
Hematology Am Soc Hematol Educ Program
.
2016
;
2016
(
1
):
457
-
461
.
16.
Pirenne
F
,
Floch
A
,
Habibi
A
.
How to avoid the problem of erythrocyte alloimmunization in sickle cell disease
.
Hematology Am Soc Hematol Educ Program
.
2021
;
2021
(
1
):
689
-
695
.
17.
Hendrickson
JE
,
Tormey
CA
.
Understanding red blood cell alloimmunization triggers
.
Hematology Am Soc Hematol Educ Program
.
2016
;
2016
(
1
):
446
-
451
.
18.
Karafin
MS
,
Westlake
M
,
Hauser
RG
, et al
.
Risk factors for red blood cell alloimmunization in the Recipient Epidemiology and Donor Evaluation Study (REDS-III) database
.
Br J Haematol
.
2018
;
181
(
5
):
672
-
681
.
19.
Fasano
RM
,
Booth
GS
,
Miles
M
, et al
.
Red blood cell alloimmunization is influenced by recipient inflammatory state at time of transfusion in patients with sickle cell disease
.
Br J Haematol
.
2015
;
168
(
2
):
291
-
300
.
20.
Papay
P
,
Hackner
K
,
Vogelsang
H
, et al
.
High risk of transfusion-induced alloimmunization of patients with inflammatory bowel disease
.
Am J Med
.
2012
;
125
(
7
):
717.e1
-
717.e8
.
21.
Ryder
AB
,
Hendrickson
JE
,
Tormey
CA
.
Chronic inflammatory autoimmune disorders are a risk factor for red blood cell alloimmunization
.
Br J Haematol
.
2016
;
174
(
3
):
483
-
485
.
22.
Bao
W
,
Zhong
H
,
Manwani
D
, et al
.
Regulatory B-cell compartment in transfused alloimmunized and non-alloimmunized patients with sickle cell disease
.
Am J Hematol
.
2013
;
88
(
9
):
736
-
740
.
23.
Godefroy
E
,
Liu
Y
,
Shi
P
, et al
.
Altered heme-mediated modulation of dendritic cell function in sickle cell alloimmunization
.
Haematologica
.
2016
;
101
(
9
):
1028
-
1038
.
24.
Vingert
B
,
Tamagne
M
,
Habibi
A
, et al
.
Phenotypic differences of CD4(+) T cells in response to red blood cell immunization in transfused sickle cell disease patients
.
Eur J Immunol
.
2015
;
45
(
6
):
1868
-
1879
.
25.
Godefroy
E
,
Zhong
H
,
Pham
P
,
Friedman
D
,
Yazdanbakhsh
K
.
TIGIT-positive circulating follicular helper T cells display robust B-cell help functions: potential role in sickle cell alloimmunization
.
Haematologica
.
2015
;
100
(
11
):
1415
-
1425
.
26.
Celli
R
,
Schulz
W
,
Hendrickson
JE
,
Tormey
CA
.
A novel network analysis tool to identify relationships between disease states and risks for red blood cell alloimmunization
.
Vox Sang
.
2017
;
112
(
5
):
469
-
472
.
27.
Tamagne
M
,
Pakdaman
S
,
Bartolucci
P
, et al
.
Whole-blood phenotyping to assess alloimmunization status in transfused sickle cell disease patients
.
Blood Adv
.
2021
;
5
(
5
):
1278
-
1282
.
28.
Zhong
H
,
Bao
W
,
Friedman
D
,
Yazdanbakhsh
K
.
Hemin controls T cell polarization in sickle cell alloimmunization
.
J Immunol
.
2014
;
193
(
1
):
102
-
110
.
29.
Pollard
AJ
,
Bijker
EM
.
A guide to vaccinology: from basic principles to new developments
.
Nat Rev Immunol
.
2021
;
21
(
2
):
83
-
100
.
30.
Hudson
KE
,
Lin
E
,
Hendrickson
JE
,
Lukacher
AE
,
Zimring
JC
.
Regulation of primary alloantibody response through antecedent exposure to a microbial T-cell epitope
.
Blood
.
2010
;
115
(
19
):
3989
-
3996
.
31.
Lanzavecchia
A
.
Antigen-specific interaction between T and B cells
.
Nature
.
1985
;
314
(
6011
):
537
-
539
.
32.
Mitchison
NA
.
The carrier effect in the secondary response to hapten-protein conjugates. II. Cellular cooperation
.
Eur J Immunol
.
1971
;
1
(
1
):
18
-
27
.
33.
Wong
ASL
,
Gruber
DR
,
Richards
AL
, et al
.
Tolerization of recent thymic emigrants is required to prevent RBC-specific autoimmunity
.
J Autoimmun
.
2020
;
114
:
102489
.
34.
Hudson
KE
,
Hendrickson
JE
,
Cadwell
CM
,
Iwakoshi
NN
,
Zimring
JC
.
Partial tolerance of autoreactive B and T cells to erythrocyte-specific self-antigens in mice
.
Haematologica
.
2012
;
97
(
12
):
1836
-
1844
.
35.
Patel
SR
,
Bennett
A
,
Girard-Pierce
K
, et al
.
Recipient priming to one RBC alloantigen directly enhances subsequent alloimmunization in mice
.
Blood Adv
.
2018
;
2
(
2
):
105
-
115
.
36.
Panch
SR
,
Montemayor-Garcia
C
,
Klein
HG
.
Hemolytic transfusion reactions
.
N Engl J Med
.
2019
;
381
(
2
):
150
-
162
.
37.
Xiang
J
,
Huang
H
,
Liu
Y
.
A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells
.
J Immunol
.
2005
;
174
(
12
):
7497
-
7505
.
38.
Ahmed
KA
,
Xie
Y
,
Zhang
X
,
Xiang
J
.
Acquired pMHC I complexes greatly enhance CD4(+) Th cell's stimulatory effect on CD8(+) T cell-mediated diabetes in transgenic RIP-mOVA mice
.
Cell Mol Immunol
.
2008
;
5
(
6
):
407
-
415
.
39.
Goodell
PP
,
Uhl
L
,
Mohammed
M
,
Powers
AA
.
Risk of hemolytic transfusion reactions following emergency-release RBC transfusion
.
Am J Clin Pathol
.
2010
;
134
(
2
):
202
-
206
.
40.
Whiteneck
SA
,
Lueckel
S
,
Valente
JH
,
King
KA
,
Sweeney
JD
.
Remote dispensing of emergency release red blood cells
.
Am J Clin Pathol
.
2022
;
158
(
4
):
537
-
545
.
41.
Yazer
MH
,
Waters
JH
,
Spinella
PC
.
Aabb/Trauma HORNWP. Use of uncrossmatched erythrocytes in emergency bleeding situations
.
Anesthesiology
.
2018
;
128
(
3
):
650
-
656
.
42.
Schaefer
BC
,
Schaefer
ML
,
Kappler
JW
,
Marrack
P
,
Kedl
RM
.
Observation of antigen-dependent CD8+ T-cell/ dendritic cell interactions in vivo
.
Cell Immunol
.
2001
;
214
(
2
):
110
-
122
.
43.
Auffray
I
,
Marfatia
S
,
de Jong
K
, et al
.
Glycophorin A dimerization and band 3 interaction during erythroid membrane biogenesis: in vivo studies in human glycophorin A transgenic mice
.
Blood
.
2001
;
97
(
9
):
2872
-
2878
.
44.
Desmarets
M
,
Cadwell
CM
,
Peterson
KR
,
Neades
R
,
Zimring
JC
.
Minor histocompatibility antigens on transfused leukoreduced units of red blood cells induce bone marrow transplant rejection in a mouse model
.
Blood
.
2009
;
114
(
11
):
2315
-
2322
.
45.
Zimring
JC
,
Hair
GA
,
Deshpande
SS
,
Horan
JT
.
Immunization to minor histocompatibility antigens on transfused RBCs through crosspriming into recipient MHC class I pathways
.
Blood
.
2006
;
107
(
1
):
187
-
189
.
46.
Gibb
DR
,
Liu
J
,
Santhanakrishnan
M
, et al
.
B cells require Type 1 interferon to produce alloantibodies to transfused KEL-expressing red blood cells in mice
.
Transfusion
.
2017
;
57
(
11
):
2595
-
2608
.
47.
Patel
SR
,
Gibb
DR
,
Girard-Pierce
K
, et al
.
Marginal zone B cells induce alloantibody formation following RBC transfusion
.
Front Immunol
.
2018
;
9
:
2516
.
48.
Arthur
CM
,
Patel
SR
,
Sharma
A
, et al
.
Clodronate inhibits alloimmunization against distinct red blood cell alloantigens in mice
.
Transfusion
.
2022
;
62
(
5
):
948
-
953
.
49.
Mener
A
,
Patel
SR
,
Arthur
CM
, et al
.
Complement serves as a switch between CD4+ T cell-independent and -dependent RBC antibody responses
.
JCI Insight
.
2018
;
3
(
22
):
e121631
.
50.
Zerra
PE
,
Patel
SR
,
Jajosky
RP
, et al
.
Marginal zone B cells mediate a CD4 T cell dependent extrafollicular antibody response following RBC transfusion in mice
.
Blood
.
2021
;
138
(
8
):
706
-
721
.
51.
Arthur
CM
,
Patel
SR
,
Smith
NH
, et al
.
Antigen density dictates immune responsiveness following red blood cell transfusion
.
J Immunol
.
2017
;
198
(
7
):
2671
-
2680
.
52.
Mener
A
,
Arthur
CM
,
Patel
SR
,
Liu
J
,
Hendrickson
JE
,
Stowell
SR
.
Complement component 3 negatively regulates antibody response by modulation of red blood cell antigen
.
Front Immunol
.
2018
;
9
:
676
.
53.
Arthur
CM
,
Patel
SR
,
Sullivan
HC
, et al
.
CD8+ T cells mediate antibody-independent platelet clearance in mice
.
Blood
.
2016
;
127
(
14
):
1823
-
1827
.
54.
Mener
A
,
Patel
SR
,
Arthur
CM
,
Stowell
SR
.
Antibody-mediated immunosuppression can result from RBC antigen loss independent of Fcgamma receptors in mice
.
Transfusion
.
2019
;
59
(
1
):
371
-
384
.
55.
Zerra
PE
,
Arthur
CM
,
Chonat
S
, et al
.
Fc Gamma receptors and complement component 3 facilitate anti-fVIII antibody formation
.
Front Immunol
.
2020
;
11
:
905
.
56.
Zerra
PE
,
Cox
C
,
Baldwin
WH
, et al
.
Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A
.
Blood
.
2017
;
130
(
23
):
2559
-
2568
.
57.
Zerra
PE
,
Parker
ET
,
Baldwin
WH
, et al
.
Engineering a therapeutic protein to enhance the study of anti-drug immunity
.
Biomedicines
.
2022
;
10
(
7
):
1724
.
58.
Stott
LM
,
Barker
RN
,
Urbaniak
SJ
.
Identification of alloreactive T-cell epitopes on the Rhesus D protein
.
Blood
.
2000
;
96
(
13
):
4011
-
4019
.
59.
Stephen
J
,
Cairns
LS
,
Pickford
WJ
,
Vickers
MA
,
Urbaniak
SJ
,
Barker
RN
.
Identification, immunomodulatory activity, and immunogenicity of the major helper T-cell epitope on the K blood group antigen
.
Blood
.
2012
;
119
(
23
):
5563
-
5574
.
60.
Hall
LS
,
Hall
AM
,
Pickford
W
,
Vickers
MA
,
Urbaniak
SJ
,
Barker
RN
.
Combination peptide immunotherapy suppresses antibody and helper T-cell responses to the RhD protein in HLA-transgenic mice
.
Haematologica
.
2014
;
99
(
3
):
588
-
596
.
61.
Urbaniak
SJ
.
Alloimmunity to RhD in humans
.
Transfus Clin Biol
.
2006
;
13
(
1-2
):
19
-
22
.
62.
Calabro
S
,
Gallman
A
,
Gowthaman
U
, et al
.
Bridging channel dendritic cells induce immunity to transfused red blood cells
.
J Exp Med
.
2016
;
213
(
6
):
887
-
896
.
63.
Soldatenko
A
,
Hoyt
LR
,
Xu
L
, et al
.
Innate and adaptive immunity to transfused allogeneic RBCs in mice requires MyD88
.
J Immunol
.
2022
;
208
(
4
):
991
-
997
.
64.
Zimring
JC
,
Hudson
KE
.
Cellular immune responses in red blood cell alloimmunization
.
Hematology Am Soc Hematol Educ Program
.
2016
;
2016
(
1
):
452
-
456
.
65.
Natarajan
P
,
Liu
D
,
Patel
SR
, et al
.
CD4 depletion or CD40L blockade results in antigen-specific tolerance in a red blood cell alloimmunization model
.
Front Immunol
.
2017
;
8
:
907
.
66.
Hendrickson
JE
,
Tormey
CA
,
Shaz
BH
.
Red blood cell alloimmunization mitigation strategies
.
Transfus Med Rev
.
2014
;
28
(
3
):
137
-
144
.
67.
Stowell
SR
,
Liepkalns
JS
,
Hendrickson
JE
, et al
.
Antigen modulation confers protection to red blood cells from antibody through Fcgamma receptor ligation
.
J Immunol
.
2013
;
191
(
10
):
5013
-
5025
.
68.
Gruber
DR
,
Richards
AL
,
Howie
HL
, et al
.
Passively transferred IgG enhances humoral immunity to a red blood cell alloantigen in mice
.
Blood Adv
.
2020
;
4
(
7
):
1526
-
1537
.
69.
Smith
NH
,
Hod
EA
,
Spitalnik
SL
,
Zimring
JC
,
Hendrickson
JE
.
Transfusion in the absence of inflammation induces antigen-specific tolerance to murine RBCs
.
Blood
.
2012
;
119
(
6
):
1566
-
1569
.
70.
Arneja
A
,
Salazar
JE
,
Jiang
W
,
Hendrickson
JE
,
Zimring
JC
,
Luckey
CJ
.
Interleukin-6 receptor-alpha signaling drives anti-RBC alloantibody production and T-follicular helper cell differentiation in a murine model of red blood cell alloimmunization
.
Haematologica
.
2016
;
101
(
11
):
e440
-
e444
.
71.
Tamagne
M
,
Pakdaman
S
,
Bartolucci
P
, et al
.
Whole-blood CCR7 expression and chemoattraction in red blood cell alloimmunization
.
Br J Haematol
.
2021
;
194
(
2
):
477
-
481
.
72.
Pal
M
,
Bao
W
,
Wang
R
, et al
.
Hemolysis inhibits humoral B-cell responses and modulates alloimmunization risk in patients with sickle cell disease
.
Blood
.
2021
;
137
(
2
):
269
-
280
.
73.
Liu
Y
,
Pal
M
,
Bao
W
, et al
.
Type I interferon is induced by hemolysis and drives antibody-mediated erythrophagocytosis in sickle cell disease
.
Blood
.
2021
;
138
(
13
):
1162
-
1171
.
74.
Thein
SL
,
Pirenne
F
,
Fasano
RM
, et al
.
Hemolytic transfusion reactions in sickle cell disease: underappreciated and potentially fatal
.
Haematologica
.
2020
;
105
(
3
):
539
-
544
.
75.
Drake
CG
.
The potential role of antigen spread in immunotherapy for prostate cancer
.
Clin Adv Hematol Oncol
.
2014
;
12
(
5
):
332
-
334
.
76.
Chan
LS
,
Vanderlugt
CJ
,
Hashimoto
T
, et al
.
Epitope spreading: lessons from autoimmune skin diseases
.
J Invest Dermatol
.
1998
;
110
(
2
):
103
-
109
.
77.
Freedman
J
.
Autoimmune hemolysis: a journey through time
.
Transfus Med Hemother
.
2015
;
42
(
5
):
278
-
285
.
78.
Tormey
CA
,
Hendrickson
JE
.
Transfusion-related red blood cell alloantibodies: induction and consequences
.
Blood
.
2019
;
133
(
17
):
1821
-
1830
.
79.
Salomao
M
,
Zhang
X
,
Yang
Y
, et al
.
Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
23
):
8026
-
8031
.
80.
Azouzi
S
,
Collec
E
,
Mohandas
N
,
An
X
,
Colin
Y
,
Le Van Kim
C
.
The human Kell blood group binds the erythroid 4.1R protein: new insights into the 4.1R-dependent red cell membrane complex
.
Br J Haematol
.
2015
;
171
(
5
):
862
-
871
.
81.
Zimring
JC
,
Cadwell
CM
,
Chadwick
TE
, et al
.
Nonhemolytic antigen loss from red blood cells requires cooperative binding of multiple antibodies recognizing different epitopes
.
Blood
.
2007
;
110
(
6
):
2201
-
2208
.
82.
Yu
H
,
Stowell
SR
,
Bernardo
L
, et al
.
Antibody-mediated immune suppression of erythrocyte alloimmunization can occur independently from red cell clearance or epitope masking in a murine model
.
J Immunol
.
2014
;
193
(
6
):
2902
-
2910
.
83.
Stowell
SR
,
Arthur
CM
,
Girard-Pierce
KR
, et al
.
Anti-KEL sera prevents alloimmunization to transfused KEL RBCs in a murine model
.
Haematologica
.
2015
;
100
(
10
):
e394
-
397
.
84.
Zimring
JC
,
Hair
GA
,
Chadwick
TE
, et al
.
Nonhemolytic antibody-induced loss of erythrocyte surface antigen
.
Blood
.
2005
;
106
(
3
):
1105
-
1112
.
85.
Sullivan
HC
,
Arthur
CM
,
Thompson
L
, et al
.
Anti-RhD reduces levels of detectable RhD antigen following anti-RhD infusion
.
Transfusion
.
2018
;
58
(
2
):
542
-
544
.
86.
Arthur
CM
,
Allen
JWL
,
Verkerke
H
, et al
.
Antigen density dictates RBC clearance, but not antigen modulation, following incompatible RBC transfusion in mice
.
Blood Adv
.
2021
;
5
(
2
):
527
-
538
.
87.
Sullivan
HC
,
Gerner-Smidt
C
,
Nooka
AK
, et al
.
Daratumumab (anti-CD38) induces loss of CD38 on red blood cells
.
Blood
.
2017
;
129
(
22
):
3033
-
3037
.
88.
Jash
A
,
Usaneerungrueng
C
,
Howie
HL
, et al
.
Antibodies to low-copy number RBC alloantigen convert a tolerogenic stimulus to an immunogenic stimulus in mice
.
Front Immunol
.
2021
;
12
:
629608
.
You do not currently have access to this content.
Sign in via your Institution