• Granulocyte activation and inflammatory cytokine signaling by interferon gamma and IL-6 drive TCL progression and disease symptoms.

  • Jak1/2 inhibitors simultaneously target malignant T cells and inflammatory granulocytes in ITK-SYK mice and human PTCL–derived xenografts.

Peripheral T-cell lymphomas (PTCLs), especially angioimmunoblastic and follicular TCLs, have a dismal prognosis because of the lack of efficient therapies, and patients’ symptoms are often dominated by an inflammatory phenotype, including fever, night sweats, weight loss, and skin rash. In this study, we investigated the role of inflammatory granulocytes and activated cytokine signaling on T-cell follicular helper–type PTCL (TFH-PTCL) disease progression and symptoms. We showed that ITK-SYK–driven murine PTCLs and primary human TFH-PTCL xenografts both induced inflammation in mice, including murine neutrophil expansion and massive cytokine release. Granulocyte/lymphoma interactions were mediated by positive autoregulatory cytokine loops involving interferon gamma (CD4+ malignant T cells) and interleukin 6 (IL-6; activated granulocytes), ultimately inducing broad JAK activation (JAK1/2/3 and TYK2) in both cell types. Inflammatory granulocyte depletion via antibodies (Ly6G), genetic granulocyte depletion (LyzM-Cre/MCL1flox/flox), or IL-6 deletion within microenvironmental cells blocked inflammatory symptoms, reduced lymphoma infiltration, and enhanced mouse survival. Furthermore, unselective JAK inhibitors (ruxolitinib) inhibited both TCL progression and granulocyte activation in various PTCL mouse models. Our results support the important role of granulocyte-driven inflammation, cytokine-induced granulocyte/CD4+ TCL interactions, and an intact JAK/STAT signaling pathway for TFH-PTCL development and also support broad JAK inhibition as an effective treatment strategy in early disease stages.

1.
Gascoyne
RD
,
Aoun
P
,
Wu
D
, et al
.
Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma
.
Blood
.
1999
;
93
(
11
):
3913
-
3921
.
2.
Coiffier
B
,
Brousse
N
,
Peuchmaur
M
, et al
.
Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives)
.
Ann Oncol
.
1990
;
1
(
1
):
45
-
50
.
3.
Vose
J
,
Armitage
J
,
Weisenburger
D
;
International T-Cell Lymphoma Project
.
International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes
.
J Clin Oncol
.
2008
;
26
(
25
):
4124
-
4130
.
4.
Sibon
D
,
Fournier
M
,
Briere
J
, et al
.
Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d'Etude des Lymphomes de l'Adulte trials
.
J Clin Oncol
.
2012
;
30
(
32
):
3939
-
3946
.
5.
Federico
M
,
Rudiger
T
,
Bellei
M
, et al
.
Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project
.
J Clin Oncol
.
2013
;
31
(
2
):
240
-
246
.
6.
Beltran
BE
,
Castro
D
,
De La Cruz-Vargas
JA
, et al
.
The neutrophil-lymphocyte ratio is prognostic in patients with early stage aggressive peripheral T cell lymphoma
.
Br J Haematol
.
2019
;
184
(
4
):
650
-
653
.
7.
Engsig
FN
,
Moller
MB
,
Hasselbalch
HK
,
Mahdi
B
,
Obel
N
.
Extreme neutrophil granulocytosis in a patient with anaplastic large cell lymphoma of T-cell lineage
.
APMIS
.
2007
;
115
(
6
):
778
-
783
.
8.
Siegert
W
,
Nerl
C
,
Agthe
A
, et al
.
Angioimmunoblastic lymphadenopathy (AILD)-type T-cell lymphoma: prognostic impact of clinical observations and laboratory findings at presentation. The Kiel Lymphoma Study Group
.
Ann Oncol
.
1995
;
6
(
7
):
659
-
664
.
9.
Goddard
DS
,
Yamanaka
Ki
,
Kupper
TS
,
Jones
DA
.
Activation of neutrophils in cutaneous T-cell lymphoma
.
Clin Cancer Res
.
2005
;
11
(
23
):
8243
-
8249
.
10.
Drieux
F
,
Ruminy
P
,
Sater
V
, et al
.
Detection of gene fusion transcripts in peripheral T-cell lymphoma using a multiplexed targeted sequencing assay
.
J Mol Diagn
.
2021
;
23
(
8
):
929
-
940
.
11.
Streubel
B
,
Vinatzer
U
,
Willheim
M
,
Raderer
M
,
Chott
A
.
Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma
.
Leukemia
.
2006
;
20
(
2
):
313
-
318
.
12.
Pechloff
K
,
Holch
J
,
Ferch
U
, et al
.
The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma
.
J Exp Med
.
2010
;
207
(
5
):
1031
-
1044
.
13.
Dierks
C
,
Adrian
F
,
Fisch
P
, et al
.
The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease
.
Cancer Res
.
2010
;
70
(
15
):
6193
-
6204
.
14.
Sprissler
C
,
Belenki
D
,
Maurer
H
, et al
.
Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice
.
Blood Cancer J
.
2014
;
4
(
8
):
e240
.
15.
Ross
JA
,
Nagy
ZS
,
Cheng
H
,
Stepkowski
SM
,
Kirken
RA
.
Regulation of T cell homeostasis by JAKs and STATs
.
Arch Immunol Ther Exp
.
2007
;
55
(
4
):
231
-
245
.
16.
Egwuagu
CE
.
STAT3 in CD4+ T helper cell differentiation and inflammatory diseases
.
Cytokine
.
2009
;
47
(
3
):
149
-
156
.
17.
Rochman
Y
,
Spolski
R
,
Leonard
WJ
.
New insights into the regulation of T cells by gamma(c) family cytokines
.
Nat Rev Immunol
.
2009
;
9
(
7
):
480
-
490
.
18.
Waickman
AT
,
Park
JY
,
Park
JH
.
The common gamma-chain cytokine receptor: tricks-and-treats for T cells
.
Cell Mol Life Sci
.
2016
;
73
(
2
):
253
-
269
.
19.
Takemoto
S
,
Mulloy
JC
,
Cereseto
A
, et al
.
Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins
.
Proc Natl Acad Sci U S A
.
1997
;
94
(
25
):
13897
-
13902
.
20.
Khoury
JD
,
Medeiros
LJ
,
Rassidakis
GZ
, et al
.
Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK- anaplastic large cell lymphoma
.
Clin Cancer Res
.
2003
;
9
(
10 Pt 1
):
3692
-
3699
.
21.
Chiarle
R
,
Simmons
WJ
,
Cai
H
, et al
.
Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target
.
Nat Med
.
2005
;
11
(
6
):
623
-
629
.
22.
Crescenzo
R
,
Abate
F
,
Lasorsa
E
, et al;
European T-Cell Lymphoma Study Group, T-Cell Project: Prospective Collection of Data in Patients with Peripheral T-Cell Lymphoma and the AIRC 5xMille Consortium “Genetics-Driven Targeted Management of Lymphoid Malignancies”
.
Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma
.
Cancer Cell
.
2015
;
27
(
4
):
516
-
532
.
23.
Odejide
O
,
Weigert
O
,
Lane
AA
, et al
.
A targeted mutational landscape of angioimmunoblastic T-cell lymphoma
.
Blood
.
2014
;
123
(
9
):
1293
-
1296
.
24.
Manso
R
,
Sanchez-Beato
M
,
Gonzalez-Rincon
J
, et al
.
Mutations in the JAK/STAT pathway genes and activation of the pathway, a relevant finding in nodal Peripheral T-cell lymphoma
.
Br J Haematol
.
2018
;
183
(
3
):
497
-
501
.
25.
Zhang
Q
,
Raghunath
PN
,
Xue
L
, et al
.
Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma
.
J Immunol
.
2002
;
168
(
1
):
466
-
474
.
26.
Zamo
A
,
Chiarle
R
,
Piva
R
, et al
.
Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death
.
Oncogene
.
2002
;
21
(
7
):
1038
-
1047
.
27.
Zhang
L
,
Pan
J
,
Dong
Y
, et al
.
Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass
.
Cell Metab
.
2013
;
18
(
3
):
368
-
379
.
28.
Fathi
NN
,
Mohammad
DK
,
Gorgens
A
, et al
.
Translocation-generated ITK-FER and ITK-SYK fusions induce STAT3 phosphorylation and CD69 expression
.
Biochem Biophys Res Commun
.
2018
;
504
(
4
):
749
-
752
.
29.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
, et al;
Cancer Genome Project
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet
.
2005
;
365
(
9464
):
1054
-
1061
.
30.
James
C
,
Ugo
V
,
Le Couedic
JP
, et al
.
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
.
Nature
.
2005
;
434
(
7037
):
1144
-
1148
.
31.
Kralovics
R
,
Passamonti
F
,
Buser
AS
, et al
.
A gain-of-function mutation of JAK2 in myeloproliferative disorders
.
N Engl J Med
.
2005
;
352
(
17
):
1779
-
1790
.
32.
Levine
RL
,
Wadleigh
M
,
Cools
J
, et al
.
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis
.
Cancer Cell
.
2005
;
7
(
4
):
387
-
397
.
33.
Zeiser
R
,
Burchert
A
,
Lengerke
C
, et al
.
Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey
.
Leukemia
.
2015
;
29
(
10
):
2062
-
2068
.
34.
von Bubnoff
N
,
Ihorst
G
,
Grishina
O
, et al
.
Ruxolitinib in GvHD (RIG) study: a multicenter, randomized phase 2 trial to determine the response rate of Ruxolitinib and best available treatment (BAT) versus BAT in steroid-refractory acute graft-versus-host disease (aGvHD) (NCT02396628)
.
BMC Cancer
.
2018
;
18
(
1
):
1132
.
35.
Pear
WS
,
Miller
JP
,
Xu
L
, et al
.
Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow
.
Blood
.
1998
;
92
(
10
):
3780
-
3792
.
36.
Csepregi
JZ
,
Orosz
A
,
Zajta
E
, et al
.
Myeloid-specific deletion of Mcl-1 yields severely neutropenic mice that survive and breed in homozygous form
.
J Immunol
.
2018
;
201
(
12
):
3793
-
3803
.
37.
Kopf
M
,
Baumann
H
,
Freer
G
, et al
.
Impaired immune and acute-phase responses in interleukin-6-deficient mice
.
Nature
.
1994
;
368
(
6469
):
339
-
342
.
38.
Dzhagalov
I
,
Dunkle
A
,
He
YW
.
The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages
.
J Immunol
.
2008
;
181
(
1
):
521
-
528
.
39.
Dzhagalov
I
,
St John
A
,
He
YW
.
The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages
.
Blood
.
2007
;
109
(
4
):
1620
-
1626
.
40.
Oldham
KA
,
Parsonage
G
,
Bhatt
RI
, et al
.
T lymphocyte recruitment into renal cell carcinoma tissue: a role for chemokine receptors CXCR3, CXCR6, CCR5, and CCR6
.
Eur Urol
.
2012
;
61
(
2
):
385
-
394
.
41.
Gunther
C
,
Carballido-Perrig
N
,
Kaesler
S
,
Carballido
JM
,
Biedermann
T
.
CXCL16 and CXCR6 are upregulated in psoriasis and mediate cutaneous recruitment of human CD8+ T cells
.
J Invest Dermatol
.
2012
;
132
(
3 Pt 1
):
626
-
634
.
42.
Groom
JR
,
Luster
AD
.
CXCR3 in T cell function
.
Exp Cell Res
.
2011
;
317
(
5
):
620
-
631
.
43.
Kim
SV
,
Mehal
WZ
,
Dong
X
, et al
.
Modulation of cell adhesion and motility in the immune system by Myo1f
.
Science
.
2006
;
314
(
5796
):
136
-
139
.
44.
Murphy
KM
.
Permission to proceed: Jak3 and STAT5 signaling molecules give the green light for T helper 1 cell differentiation
.
Immunity
.
2008
;
28
(
6
):
725
-
727
.
45.
Gupta
M
,
Stenson
M
,
O'Byrne
M
, et al
.
Comprehensive serum cytokine analysis identifies IL-1RA and soluble IL-2Ralpha as predictors of event-free survival in T-cell lymphoma
.
Ann Oncol
.
2016
;
27
(
1
):
165
-
172
.
46.
Futosi
K
,
Fodor
S
,
Mocsai
A
.
Neutrophil cell surface receptors and their intracellular signal transduction pathways
.
Int Immunopharmacol
.
2013
;
17
(
3
):
638
-
650
.
47.
Ellis
TN
,
Beaman
BL
.
Interferon-gamma activation of polymorphonuclear neutrophil function
.
Immunology
.
2004
;
112
(
1
):
2
-
12
.
48.
Melani
C
,
Mattia
GF
,
Silvani
A
, et al
.
Interleukin-6 expression in human neutrophil and eosinophil peripheral blood granulocytes
.
Blood
.
1993
;
81
(
10
):
2744
-
2749
.
49.
Tormo
AJ
,
Letellier
MC
,
Sharma
M
,
Elson
G
,
Crabe
S
,
Gauchat
JF
.
IL-6 activates STAT5 in T cells
.
Cytokine
.
2012
;
60
(
2
):
575
-
582
.
50.
Yang
Y
,
Ochando
J
,
Yopp
A
,
Bromberg
JS
,
Ding
Y
.
IL-6 plays a unique role in initiating c-Maf expression during early stage of CD4 T cell activation
.
J Immunol
.
2005
;
174
(
5
):
2720
-
2729
.
51.
Fujisawa
M
,
Nguyen
TB
,
Abe
Y
, et al
.
Clonal germinal center B cells function as a niche for T-cell lymphoma
.
Blood
.
2022
;
140
(
18
):
1937
-
1950
.
52.
Zhang
Q
,
Zhao
K
,
Shen
Q
, et al
.
Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6
.
Nature
.
2015
;
525
(
7569
):
389
-
393
.
53.
Chang
YP
,
Chen
CL
,
Chen
SO
, et al
.
Autophagy facilitates an IFN-gamma response and signal transduction
.
Microbes Infect
.
2011
;
13
(
11
):
888
-
894
.
54.
Rojas
M
,
Olivier
M
,
Garcia
LF
.
Activation of JAK2/STAT1-alpha-dependent signaling events during Mycobacterium tuberculosis-induced macrophage apoptosis
.
Cell Immunol
.
2002
;
217
(
1-2
):
58
-
66
.
55.
Sakatsume
M
,
Igarashi
K
,
Winestock
KD
,
Garotta
G
,
Larner
AC
,
Finbloom
DS
.
The Jak kinases differentially associate with the alpha and beta (accessory factor) chains of the interferon gamma receptor to form a functional receptor unit capable of activating STAT transcription factors
.
J Biol Chem
.
1995
;
270
(
29
):
17528
-
17534
.
56.
Cascio
G
,
Martin-Cofreces
NB
,
Rodriguez-Frade
JM
, et al
.
CXCL12 regulates through JAK1 and JAK2 formation of productive immunological synapses
.
J Immunol
.
2015
;
194
(
11
):
5509
-
5519
.
57.
Soldevila
G
,
Licona
I
,
Salgado
A
,
Ramirez
M
,
Chavez
R
,
Garcia-Zepeda
E
.
Impaired chemokine-induced migration during T-cell development in the absence of Jak 3
.
Immunology
.
2004
;
112
(
2
):
191
-
200
.
58.
Murray
HW
,
Tsai
CW
,
Liu
J
,
Ma
X
.
Responses to Leishmania donovani in mice deficient in interleukin-12 (IL-12), IL-12/IL-23, or IL-18
.
Infect Immun
.
2006
;
74
(
7
):
4370
-
4374
.
59.
Kallam
A
,
Witzig
TE
,
Roschewski
MJ
, et al
.
Phase II multi-center study of ruxolitinib phosphate for the treatment of relapsed or refractory diffuse large B-cell lymphoma (DLBCL) and peripheral T-cell lymphoma (PTCL)
.
J Clin Oncol
.
2019
;
37
(
15_suppl
):
e19063
.
60.
Moskowitz
AJ
,
Ghione
P
,
Jacobsen
E
, et al
.
A phase 2 biomarker-driven study of ruxolitinib demonstrates effectiveness of JAK/STAT targeting in T-cell lymphomas
.
Blood
.
2021
;
138
(
26
):
2828
-
2837
.
61.
Kim
W-S
,
Yoon
D-H
,
Eom
H-S
, et al
.
A phase I/II study (JACKPOT8) of DZD4205, a selective JAK1 inhibitor, in refractory or relapsed peripheral T-cell lymphoma
.
Blood
.
2020
;
136
(
Supplement 1
):
19
-
20
.
You do not currently have access to this content.
Sign in via your Institution