Monocytes/macrophages serve as sentinels involved in chronic inflammation and the eradication of various pathogens. To define molecularly the differentiation of blood monocytes into macrophages, we conducted serial analysis of gene expression (SAGE) in human blood monocytes/macrophages induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) or M-CSF. SAGE analysis of 57,560, 57,463, and 55,856 tags from monocytes, GM-CSF–, and M-CSF–induced macrophages, respectively, allowed identification of 35,037 different transcripts. Interestingly, the genes with the highest expression during differentiation from monocytes into macrophages were genes involved in lipid metabolism. Both CSF-induced macrophages expressed similar sets of genes except for several genes such as monocyte-derived chemokine (MDC), legumain, prostaglandin D synthetase, and lysosomal sialoglycoprotein. The identification of specific gene expression in human monocytes, GM-CSF–, or M-CSF–induced macrophages provides novel methods to define macrophage subsets and the maturation and activation stage of cells of macrophage lineage and, possibly, to diagnose diseases in which macrophages play a major role. This study represents the first extensive serial analysis of gene expression for any type of human hematopoietic cells.

MONOCYTES AND macrophages originate from multipotent progenitor cells in bone marrow and play a pivotal role in host defense to pathogens, wound healing, angiogenesis, and various types of chronic inflammation, eg, granulomatous reaction, fibrosis, and atherosclerosis. Under normal steady-state conditions, monocytes migrate randomly to various organs and body cavities where they differentiate into macrophages.1-3 During inflammation or a local infection with pathogens, chemotactic cytokines (chemokines), and various peptide and nonpeptide mediators of inflammation are generated locally and stimulate monocytes to migrate into the site where they differentiate into macrophages. Macrophages in various tissues and body cavities vary in their morphology and function and have been given different names, eg, Kupffer cells in the liver, pulmonary and alveolar macrophages in the lung, and microglial cells in the central nervous system. However, the relationship between blood monocytes and various tissue macrophages remains unclear.

Monocytes and macrophages have several characteristics in common such as Fcγ receptors, β2 integrins, phagocytosis of foreign particles, and production of proinflammatory cytokines. However, these cells have never been molecularly defined, and the processes of differentiation and formation of functional subsets of macrophages are not yet understood.

Here we have applied the recently developed serial analysis of gene expression (SAGE) method to allow quantitative analysis of a large number of transcripts in human monocytes and macrophages. SAGE has been shown to provide a means for the quantitative cataloging and comparison of expressed genes in various physiological, developmental, and pathological states.4-7 The SAGE technology is based on the following principles: (1) short sequence tags (9 to 11 bp) are generated from the mRNA population of interest; (2) these tags, derived from a defined location in a transcript, contain sufficient information to positively identify a transcript; (3) many transcript tags can be linked together to form long serial molecules and the multiple tags can be sequenced simultaneously. The expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags and identifying the gene corresponding to each tag.

SAGE libraries were generated from highly purified human blood monocytes, monocyte-derived macrophages differentiated by granulocyte-macrophage colony-stimulating factor (GM-CSF) and monocyte-derived macrophages differentiated by M-CSF. It has been well established that GM-CSF and M-CSF independently induce the proliferation and differentiation of monocytes into distinct subsets of macrophages with different morphology and function,8-11providing a model of macrophage heterogeneity in different tissue microenvironments.

Preparation of cells.

Peripheral blood mononuclear cells (PBMC) were isolated from venous blood drawn from normal healthy volunteers in Tokyo Metropolitan Red Cross Blood Center. Briefly, PBMC were isolated by centrifugation on a Ficoll-Metrizoate density gradient (density [d] 1.077, Lymphoprep; Nycomed, Oslo, Norway) and suspended in RPMI 1640 medium containing 7.5% FCS (heat-inactivated fetal calf serum; GIBCO, Gaithersburg, MD), 100 μg/mL streptomycin, and 100 U/mL penicillin. This medium contained less than 3 pg of lipopolysaccharide (LPS) per mL as assessed by a Limulus amebocyte lysate test. PBMC were incubated with anti-CD14 monoclonal antibody (MoAb) coated with microbeads, and monocytes were isolated by passing the PBMC through a magnetic cell separation system (MACS; Miltenyi Biotec, Bergish Gladbach, Germany) with a type VR column. These cell suspensions were then aliquoted into plastic tissue culture plates and incubated for 30 minutes at 37°C, 5% CO2 to obtain the highly purified cells. More than 99% of the cells were judged to be monocytes by morphology, positive staining for CD14 (LeuM3; Becton Dickinson, San Jose, CA) in a flow cytometric analysis and nonspecific esterase staining.

SAGE protocol.

mRNAs of monocytes and macrophages were purified from a mixture of total RNA from at least six donors. Monocytes were incubated with M-CSF (100 ng/mL; Morinaga Milk Industry Co, Ltd, Tokyo, Japan) or GM-CSF (500 U/mL; Kirin Brewery Co, Ltd, Tokyo, Japan) in RPMI 1640 containing 7.5% FCS in 5% CO2 at 37°C for 7 days. Total RNA from these cells was isolated by direct lysis in RNAzol B (TEL-TEST, Inc, Friendswood, TX). Poly(A)+ RNA were isolated using the FastTrac mRNA purification kit (Invitrogen, San Diego, CA) according to the manufacturer’s instructions. A schematic diagram of the SAGE technique4-7 (by Vogelstein et al) is accessible on SAGE Home Page via the Internet (http://www.sagenet.org/). SAGE libraries were generated using 2.5 μg poly(A)+ RNA and were converted to cDNA with a BRL synthesis kit (GIBCO-BRL, Gaithersburg, MD) following the manufacturer’s protocol, with the inclusion of primer biotin-5′-T18-3′. The cDNA was cleaved with the restriction enzyme NlaIII, and the 3′-terminal cDNA fragments were bound to streptavidin-coated magnetic beads (Dynal, Oslo, Norway). After capture of 3′ cDNA fragments, the bound cDNA was divided into two pools, and one of the following linkers containing recognition sites for BsmF1 was ligated to each pool: linker 1, 5′-TTTGGATTTGCTGGTGCAGTACAACTAGGCTTAATAGGGACATG-3′, 5′-TCCCTATTAAGCCTAGTTGTACTGCACCAGCAAATCC[Amino mod. C7]-3′, linker 2, 5′-TTTCTGCTCGAATTCAAGCTTCTAACGATGTACGGGGACATG-3′, 5′-TCCCCGTACATCGTTAGAAGCTTGAATTCGAGCAG[amino mod. C7]. BecauseBsmF1 cleaves 14 bp away from its recognition site and theNlaIII site overlaps the BsmF1 site by 1 bp, a 15-bp SAGE tag was released with BsmF1. SAGE tag overhangs were filled in with Klenow, and tags from the two pools were combined and ligated to each other. The ligation product was diluted and then amplified with polymerase chain reaction (PCR) for 26 cycles with 5′-GGATTTGCTGGTGCAGTACA-3′ and 5′-CTGCTCGAATTCAAGCTTCT-3′ as primers. The PCR product was analyzed by polyacrylamide gel electrophoresis (PAGE), and the PCR product containing two tags ligated tail to tail (ditag) was excised. The PCR product was then cleaved with NlaIII, and the band containing the ditags was excised and self-ligated. After ligation, the concatenated products were separated by PAGE and products between 400 bp and 900 bp were excised. These products were cloned into theSphI site of pZero-1 (Invitrogen). Colonies were screened for inserts by PCR, with M13 forward and M13 reverse sequences located outside the cloning site as primers. PCR products containing inserts of greater than 400 bp were sequenced with the TaqFS Dyeterminater kit and analyzed using a 96 lanes-377 ABI automated sequencer (Perkin-Elmer, Branchburg, NJ).

SAGE was performed on mRNA from human monocytes, GM-CSF–, and M-CSF–induced macrophages. Sequence files were analyzed by means of the SAGE program group and DNAsis softwear (Takara, Osaka, Japan). After correcting for sequencing mistakes, a total of 170,879 tags representing 57,560, 57,463, and 55,856 from human monocytes, GM-CSF–, and M-CSF–induced macrophages, respectively, were analyzed.

Reverse transcriptase (RT)-PCR.

Total RNA (200 ng) was prepared by use of RNAzol B. The RNA was reverse-transcribed in 50 μL of 10 mmol/L Tris-HCl (pH 8.3), 6.5 mmol/L MgCl2, 50 mmol/L KCl, 10 mmol/L dithiothreitol, 1 mmol/L of each dNTP, 2 μmol/L random hexamer, and 2.4 U/μL of Moloney murine leukemia virus reverse transcriptase for 1 hour at 42°C. Complementary DNA (cDNA), corresponding to 40 ng of total RNA, was boiled for 3 minutes and quenched on ice before amplification by PCR. The conditions for PCR were as follows: in a 50-μL reaction, 15 μmol/L of each primer, 125 μmol/L each of deoxyguanosine triphosphate (dGTP), deoxyadenosine triphosphate (dATP), deoxycytidine triphosphate (dCTP), and deoxythymidine triphosphate (dTTP) (Toyobo, Osaka, Japan), 50 mmol/L KCl, 10 mmol/L Tris-HCl, pH 8.3, 1.5 mmol/L MgCl2, and AmplyTaq (Perkin-Elmer). Primers used were as follows. Legumain: sense 5′-CAGTGATCGTGGCAGGTTCA-3′, antisense 5′-TTGCCGGATCCTATACCCTTC-3′, GOS2: sense 5′-AAGATGGTGAAGCTGTACGTGC-3′, antisense 5′-TGGATGCTTGTGGTAGGTCAGT-3′, Thymosin beta 10: sense 5′-TGGCAGACAAACCAGACATGG-3′, antisense 5′-ATTTGGCAGTCCGATTGGG-3′, GA733-1: sense 5′-AACAACAGGAAACCTGACTGGG-3′, antisense 5′-CAGTAAGGGCAAGCTGAGGAAT-3′, MDC: sense 5′-ACCGGATCAGTTCAGAAACCA-3′, antisense 5′-ACTTCTTTGCCGTCCCCTTT-3′. Reaction mixtures were incubated in a Perkin-Elmer DNA Thermal cycler for 30 cycles (denaturation for 60 seconds at 94°C, annealing for 60 seconds at 58°C, extension for 120 seconds at 72°C).

Statistical analysis.

Statistical significance between samples was calculated as described previously.12 

The morphology of freshly isolated GM-CSF– and M-CSF–induced macrophages.

Figure 1 shows the morphology of GM-CSF– and M-CSF–induced macrophages. GM-CSF–induced macrophages were round, whereas M-CSF–induced macrophages were spindle-like. The distinct morphology of these cells has been described elsewhere.13,14 

Fig. 1.

Photographs of normal human blood monocytes, GM-CSF– and M-CSF–induced macrophages. Monocytes were cultured in RPMI 1640 medium plus 7.5% FCS in the presence of (A) rhGM-CSF (500 U/mL) or (B) rhM-CSF (100 ng/mL) for 7 days.

Fig. 1.

Photographs of normal human blood monocytes, GM-CSF– and M-CSF–induced macrophages. Monocytes were cultured in RPMI 1640 medium plus 7.5% FCS in the presence of (A) rhGM-CSF (500 U/mL) or (B) rhM-CSF (100 ng/mL) for 7 days.

Close modal
SAGE tag abundance expression in monocytes, GM-CSF–, and M-CSF–induced macrophages.

A total of 170,879 tags, including 57,560, 57,463, and 55,856 tags from monocytes, GM-CSF–, and M-CSF–induced macrophages, respectively, allowed identification of 35,037 different transcripts. Tables 1 and 2show the top 30 transcripts in monocytes, GM-CSF–, and M-CSF–induced macrophages. The most expressed genes in human monocytes were identified as MRP-14, with expression frequency of 1.87%, followed by ferritin H-chain and elongation factor α subunit (Table1). In contrast, the most expressed genes in GM-CSF– and M-CSF–induced macrophages were identified as ferritin L-chain (abundance, 2.69%) and apolipoprotein C-1 (2.21%), respectively. High expression of many genes encoding cytoskeleton proteins, lipid metabolism-related proteins, mitochondrial proteins, proteases, and iron regulation proteins was observed (Table 2).

Table 1.

Transcripts Profile in Human Peripheral Blood Monocytes

Abundance (%) Tag Sequence GenBank Match (accession no.)
1.87  GTGGCCACGG  MRP-14 (M21064
1.32  TTGGGGTTTC  Ferritin H cahin (M97164)  
1.16 TGTGTTGAGA  Elongation factor 1 α subunit (M27364
1.02  TTGGTCCTCT  Ribosomal protein L41 (AF026844
0.99  CCCTGGGTTC  Ferritin L chain (M11147)  
0.70 CCCGTCCGGA  No match  
0.68  CACAAACGGT  Ribosomal protein S27 (U57847)  
0.68  CCTGTAATCC  No match 
0.64  GTTCACATTA  p33 (W69184)  
0.62  CTGACCTGTG MHC class I (M11799)  
0.59  GTGAAACCCC  No match 
0.55  TGGTGTTGAG  Ribosomal protein S18 (X69150
0.52  TGCACGTTTT  Ribosomal protein L32 (X03342
0.50  TACCTGCAGA  MRP-8 (X06234)  
0.49  CCCATCGTCC Cytochrome C oxidase subunit II (X15759)  
0.48 GTTGTGGTTA  β-2 microglobulin (M17987)  
0.46 GTGAAGGCAG  Ribosomal protein S3a (X87373)  
0.45 GGGCATCTCT  HLA DR alpha chain (K01171)  
0.44 TTGTAATCGT  Ornithine decarboxylase (D87914)  
0.43 AGGCTACGGA  SMCX (Z29650)  
0.43  CCCACAACCT Ficolin-1 (S80990)  
0.43  CCACTGCACT  No match 
0.42  GGGCTGGGGT  Ribosomal protein L29 (Z49148
0.41  ATGGCTGGTA  LLRep3 (X17206)  
0.41 CGCCGCCGGC  Ribosomal protein L35 (U12465)  
0.40 GAGGGAGTTT  Ribosomal protein L27a (U14968)  
0.40 CCAGAACAGA  Ribosomal protein L30 (X79238)  
0.40 AGGGCTTCCA  No match  
0.39  ACTTTTTCAA  No match  
0.39  TTGGTGAAGG  Thymosin beta-4 (M17733
Abundance (%) Tag Sequence GenBank Match (accession no.)
1.87  GTGGCCACGG  MRP-14 (M21064
1.32  TTGGGGTTTC  Ferritin H cahin (M97164)  
1.16 TGTGTTGAGA  Elongation factor 1 α subunit (M27364
1.02  TTGGTCCTCT  Ribosomal protein L41 (AF026844
0.99  CCCTGGGTTC  Ferritin L chain (M11147)  
0.70 CCCGTCCGGA  No match  
0.68  CACAAACGGT  Ribosomal protein S27 (U57847)  
0.68  CCTGTAATCC  No match 
0.64  GTTCACATTA  p33 (W69184)  
0.62  CTGACCTGTG MHC class I (M11799)  
0.59  GTGAAACCCC  No match 
0.55  TGGTGTTGAG  Ribosomal protein S18 (X69150
0.52  TGCACGTTTT  Ribosomal protein L32 (X03342
0.50  TACCTGCAGA  MRP-8 (X06234)  
0.49  CCCATCGTCC Cytochrome C oxidase subunit II (X15759)  
0.48 GTTGTGGTTA  β-2 microglobulin (M17987)  
0.46 GTGAAGGCAG  Ribosomal protein S3a (X87373)  
0.45 GGGCATCTCT  HLA DR alpha chain (K01171)  
0.44 TTGTAATCGT  Ornithine decarboxylase (D87914)  
0.43 AGGCTACGGA  SMCX (Z29650)  
0.43  CCCACAACCT Ficolin-1 (S80990)  
0.43  CCACTGCACT  No match 
0.42  GGGCTGGGGT  Ribosomal protein L29 (Z49148
0.41  ATGGCTGGTA  LLRep3 (X17206)  
0.41 CGCCGCCGGC  Ribosomal protein L35 (U12465)  
0.40 GAGGGAGTTT  Ribosomal protein L27a (U14968)  
0.40 CCAGAACAGA  Ribosomal protein L30 (X79238)  
0.40 AGGGCTTCCA  No match  
0.39  ACTTTTTCAA  No match  
0.39  TTGGTGAAGG  Thymosin beta-4 (M17733

Top 30 transcripts expressed in monocytes are listed. The tag sequence represents the 10-bp SAGE tag. Probable GenBank matches are listed. More information on this table is available on the Internet at (http://www.prevent.m.u-tokyo.ac.jp/SAGE.html).

Table 2.

Transcripts Profile in GM-CSF- and M-CSF–Induced Macrophages

GM-Induced MφM-Induced Mφ
Abundance (%) Tag Sequence GenBank Match (accession no.) Abundance (%)Tag Sequence GenBank Match (accession no.)
2.69 CCCTGGGTTC  Ferritin L-chain (M11147)  2.21  TGGCCCCAGG Apolipoprotein C-1 (L13175)  
2.65  TGGCCCCAGG Apolipoprotein C-1 (L13175)  1.97  TTGGGGTTTC  Ferritin H-chain (M97164)  
1.85  TTGGGGTTTC  Ferritin H-chain (M97164)  1.94  CCCTGGGTTC  Ferritin L-chain (M11147
1.83  CGACCCCACG  Apolipoprotein E (M12529)  1.15 CGACCCCACG  Apolipoprotein E (M12529)  
0.76 CCCATCGTCC  Cytochrome C oxidase subunit II (X15759)  1.06 TGGGTGAGCC  Cathepsin B (L16510)  
0.61  CTAAGACTTC No match  0.83  CAAGCATCCC  No match  
0.60 TGGGTGAGCC  Cathepsin B (L16510)  0.78  CCCATCGTCC Cytochrome C oxidase subunit II (X15759)  
0.59 ACTTTTTCAA  No match  0.64  CCTGTAATCC  No match 
0.58  GGGGCAACAG  CD52 (X67699)  0.58  CTAAGACTTC No match  
0.52  GCGGTTGTGG  Lysosomal associated multitrans-membrane protein (U51240)  0.55  TTGGTCCTCT Ribosomal protein L41 (AF026844)  
0.52  GTTCACATTA P33 (W69184)  0.48  TGTGTTGAGA  Elongation factor alpha 1 subunit (M27364)  
0.50  GTATGGGCCC  HC-gp39 (M809270.47  AGCCCTACAA  No match  
0.48  TTGGTCCTCT Ribosomal protein L41 (AF026844)  0.47  GGGGAAATCG Thymosin beta 10 (M92381)  
0.47  GTTGTGGTTA  β-2 microglobulin (M17987)  0.45  ACTTTTTCAA  No match 
0.44  CCTGTAATCC  No match  0.44  TTCATACACC  No match  
0.43  GGGGAAATCG  Thymosin beta 10 (M923810.40  CACCTAATTG  No match  
0.43  GAAATACAGT Cathepsin D (M11233)  0.40  GCCCCCAATA  14 kd lectin (J04456)  
0.41  TTCATACACC  No match  0.36 GTTGTGGTTA  Beta-2 microglobulin (M17987)  
0.41 TGTGTTGAGA  Elongation factor α 1 subunit (M27364)  0.36 GTGAAACCCC  No match  
0.38  CTGACCTGTG  MHC class I (M11799)  0.35  TTGTAATCGT  Ornithine decarboxylase (D87914)  
0.37  CTGGGCCTGG  No match  0.34 CTCCCCTGCC  Macrophage capping protein (M94345)  
0.36 CACCTAATTG  No match  0.34  TTCACTGTGA  Galectin-3 (AB006780)  
0.34  ACCGCCGTGG  Cytochrome b (M211860.34  GCGGTTGTGG  Lysosomal associated multitrans-membrane protein (U51240)  
0.34  CTTCCAGCTA  Lipocortin II (M14043)  0.33  GAAATACAGT  Cathepsin D (M11233)  
0.32 GTGCTGAATG  Myosin alkali light chain (M22920)  0.32 GTATGGGCCC  HC-gp39 (M80927)  
0.31  TTGTAATCGT Ornithine decarboxylase (D87914)  0.30  CCTAGCTGGA  T-cell cyclophilin (Y00052)  
0.30  GTGAAACCCC  No match  0.30 TTGGTGAAGG  Thymosin beta 4  
0.30  AGCCCTACAA  No match  0.28  CCACTGCACT  No match  
0.30  GCCCCCAATA 14 kD lectin (J04456)  0.28  GGCTGGGGGC Profilin (J03191)  
0.29  CTCCCCTGCC  Macrophage capping protein (M94345)  0.27  ATGAGCTGAC  Cystatin B (U46692
GM-Induced MφM-Induced Mφ
Abundance (%) Tag Sequence GenBank Match (accession no.) Abundance (%)Tag Sequence GenBank Match (accession no.)
2.69 CCCTGGGTTC  Ferritin L-chain (M11147)  2.21  TGGCCCCAGG Apolipoprotein C-1 (L13175)  
2.65  TGGCCCCAGG Apolipoprotein C-1 (L13175)  1.97  TTGGGGTTTC  Ferritin H-chain (M97164)  
1.85  TTGGGGTTTC  Ferritin H-chain (M97164)  1.94  CCCTGGGTTC  Ferritin L-chain (M11147
1.83  CGACCCCACG  Apolipoprotein E (M12529)  1.15 CGACCCCACG  Apolipoprotein E (M12529)  
0.76 CCCATCGTCC  Cytochrome C oxidase subunit II (X15759)  1.06 TGGGTGAGCC  Cathepsin B (L16510)  
0.61  CTAAGACTTC No match  0.83  CAAGCATCCC  No match  
0.60 TGGGTGAGCC  Cathepsin B (L16510)  0.78  CCCATCGTCC Cytochrome C oxidase subunit II (X15759)  
0.59 ACTTTTTCAA  No match  0.64  CCTGTAATCC  No match 
0.58  GGGGCAACAG  CD52 (X67699)  0.58  CTAAGACTTC No match  
0.52  GCGGTTGTGG  Lysosomal associated multitrans-membrane protein (U51240)  0.55  TTGGTCCTCT Ribosomal protein L41 (AF026844)  
0.52  GTTCACATTA P33 (W69184)  0.48  TGTGTTGAGA  Elongation factor alpha 1 subunit (M27364)  
0.50  GTATGGGCCC  HC-gp39 (M809270.47  AGCCCTACAA  No match  
0.48  TTGGTCCTCT Ribosomal protein L41 (AF026844)  0.47  GGGGAAATCG Thymosin beta 10 (M92381)  
0.47  GTTGTGGTTA  β-2 microglobulin (M17987)  0.45  ACTTTTTCAA  No match 
0.44  CCTGTAATCC  No match  0.44  TTCATACACC  No match  
0.43  GGGGAAATCG  Thymosin beta 10 (M923810.40  CACCTAATTG  No match  
0.43  GAAATACAGT Cathepsin D (M11233)  0.40  GCCCCCAATA  14 kd lectin (J04456)  
0.41  TTCATACACC  No match  0.36 GTTGTGGTTA  Beta-2 microglobulin (M17987)  
0.41 TGTGTTGAGA  Elongation factor α 1 subunit (M27364)  0.36 GTGAAACCCC  No match  
0.38  CTGACCTGTG  MHC class I (M11799)  0.35  TTGTAATCGT  Ornithine decarboxylase (D87914)  
0.37  CTGGGCCTGG  No match  0.34 CTCCCCTGCC  Macrophage capping protein (M94345)  
0.36 CACCTAATTG  No match  0.34  TTCACTGTGA  Galectin-3 (AB006780)  
0.34  ACCGCCGTGG  Cytochrome b (M211860.34  GCGGTTGTGG  Lysosomal associated multitrans-membrane protein (U51240)  
0.34  CTTCCAGCTA  Lipocortin II (M14043)  0.33  GAAATACAGT  Cathepsin D (M11233)  
0.32 GTGCTGAATG  Myosin alkali light chain (M22920)  0.32 GTATGGGCCC  HC-gp39 (M80927)  
0.31  TTGTAATCGT Ornithine decarboxylase (D87914)  0.30  CCTAGCTGGA  T-cell cyclophilin (Y00052)  
0.30  GTGAAACCCC  No match  0.30 TTGGTGAAGG  Thymosin beta 4  
0.30  AGCCCTACAA  No match  0.28  CCACTGCACT  No match  
0.30  GCCCCCAATA 14 kD lectin (J04456)  0.28  GGCTGGGGGC Profilin (J03191)  
0.29  CTCCCCTGCC  Macrophage capping protein (M94345)  0.27  ATGAGCTGAC  Cystatin B (U46692

Top 30 transcripts expressed in both GM-CSF– and M-CSF–induced macrophages are listed. The tag sequence represents the 10-bp SAGE tag. Probable GenBank matches are listed. More information on this table is available on the Internet at (http://www.prevent.m.u-tokyo.ac.jp/SAGE.html).

Comparison of expression patterns in monocytes, GM-CSF– and M-CSF–induced macrophages.

Comparison of the expressed genes among monocytes, GM-CSF–, and M-CSF–induced macrophages showed that the expression levels of most of the transcripts (more than 20,000 transcripts) in these cells were similar (Fig 2). However, the expression profiles also showed 354 and 314 transcripts of GM-CSF– and M-CSF–induced macrophages, respectively, which were different from those of monocytes (P < .01). Expression levels of 201 of 354 and 157 of 314 genes were decreased in GM-CSF– and M-CSF–induced macrophages as compared with those in monocytes. Conversely, 153 and 157 transcripts were expressed at higher levels in the GM-CSF– and M-CSF–induced macrophages, respectively, than in monocytes.

Fig. 2.

Comparison of gene expression frequency in monocytes, GM-CSF–, or M-CSF–induced macrophages. A semilogarithmic plot shows 116 and 73 tags that were decreased more than 10 times in GM-CSF– or M-CSF–induced macrophages, respectively, compared with monocytes, whereas 118 and 137 tags increased more than 10 times in GM-CSF– or M-CSF–induced macrophages, respectively, compared with monocytes. Moreover, 21 tags increased more than 10 times in GM-CSF–induced macrophages compared with M-CSF–induced macrophages; 34 tags increased more than 10 times in M-CSF–induced macrophages compared with GM-CSF–induced macrophages; 57,560, 57,463, and 55,856 tags derived from monocytes, GM-CSF–, or M-CSF–induced macrophages, respectively, were used for this analysis. The relative expression of each transcript was determined by dividing the number of tags observed in monocytes or both macrophages, as indicated. To avoid division by 0, we used a tag value of 1 for any tag that was not detectable in one sample. These ratios are plotted on the abscissa. The number of genes comprising each ratio is plotted on the ordinate.

Fig. 2.

Comparison of gene expression frequency in monocytes, GM-CSF–, or M-CSF–induced macrophages. A semilogarithmic plot shows 116 and 73 tags that were decreased more than 10 times in GM-CSF– or M-CSF–induced macrophages, respectively, compared with monocytes, whereas 118 and 137 tags increased more than 10 times in GM-CSF– or M-CSF–induced macrophages, respectively, compared with monocytes. Moreover, 21 tags increased more than 10 times in GM-CSF–induced macrophages compared with M-CSF–induced macrophages; 34 tags increased more than 10 times in M-CSF–induced macrophages compared with GM-CSF–induced macrophages; 57,560, 57,463, and 55,856 tags derived from monocytes, GM-CSF–, or M-CSF–induced macrophages, respectively, were used for this analysis. The relative expression of each transcript was determined by dividing the number of tags observed in monocytes or both macrophages, as indicated. To avoid division by 0, we used a tag value of 1 for any tag that was not detectable in one sample. These ratios are plotted on the abscissa. The number of genes comprising each ratio is plotted on the ordinate.

Close modal

Genes expressed in GM-CSF– versus M-CSF–induced macrophages were more similar to each other than they were to genes expressed in monocytes. The 117 transcribed genes of GM-CSF– and M-CSF–induced macrophages were expressed at significantly different levels (P < .01). Of the 117 transcribed genes, 57 were expressed at an increased level in GM-CSF–induced macrophages compared with M-CSF–induced macrophages, and 60 of the 117 transcribed genes were expressed at a higher level in M-CSF–induced macrophages compared with GM-CSF–induced macrophages.

Next, differently expressed genes were searched through the GenBank data base to identify the individual genes. Table 3 shows the top 30 increased transcripts in GM-CSF–induced macrophages. Most of the increased transcripts in GM-CSF–induced macrophages were identical to those in M-CSF–induced macrophages. For example, tag frequency of hc-gp39 was 0 in monocytes, whereas it increased to 288 and 182 in GM-CSF–induced macrophages and M-CSF–induced macrophages, respectively. Gene expression of apolipoprotein C-1 in monocytes also increased from 6 to 1,515 and 1,261 in GM-CSF– and M-CSF–induced macrophages, respectively. Increase of the expression of several genes identified here, such as hc-gp39, osteopontin,15gelsolin,16 apolipoprotein E,17CD9,18 chitotriosidase,19 and cellular retinoic acid binding protein20 have been reported previously.

Table 3.

Transcripts Increased in Human CSF-Induced Macrophages

Fold Tag Sequence No.GenBank Match (accession no.)
Mono GM M
288 GTATGGGCCC  0  288  182  Hc-gp39 (M80927)  
252 TGGCCCCAGG  6  1,515  1,261  Apolipoprotein C-1 (L13175)  
174  CGACCCCACG  6  1,044  657 Apolipoprotein E (M12529)  
151  TAAATCCCCA  1  151 154  Collagenase type IV (J05070)  
117  AACGGGGCCC 0  117  8  MDC (U83171)  
72  TCACCGGTCA  72  63  Gelsolin (X004412)  
71  GCCCCAGCCC  71  25  Chitotriosidase (U29615)  
64  TGTCCCAGCC 0  64  60  Acid phosphatase type 5 (X14618)  
58 CTGGACCCGG  1  58  16  No match  
40 CACCTCCTAT  0  40  95  No match  
39 AGAAGTGTCC  2  79  43  Lysosomal acid lipase (Z31690)  
39  TGGCCCCAAG  0  39  58  No match  
39  ACATTCTTTT  0  39  26  NMB (X76534)  
38  ACTATTTCCA  3  116  54  Fructose 1,6 bisphosphatase (M19922)  
37  CTCACCGCCC  0  37 31  Cellular retinoic binding protein II (M68867)  
35 TTATGGGGAG  0  35  4  Transformation-sensitive protein (M86752)  
34  GATGACCCCC  0  34  40  No match  
32  GCCATCCAGA  3  97  41  No match 
32  AATAGAAATT  0  32  42  Osteopontin (J04765
32  AAGATTGGTG  0  32  40  CD9 (M38690)  
31 GGTGGGGAGA  0  31  22  Clone LF113 (U18009)  
31 TCTTGATTTA  0  31  16  α 2 microglobulin (M11313)  
31  TTACAGAACT  1  31  11  LDL phospholipase A2 (U20157)  
31  ATGTGAAGAG  0  31  Osteonectin (J03040)  
30  ACCTTTACTG  0  30  11 No match  
30  TCTCAGATGA  2  60  13  Sterol 27-hydroxylase (M62401)  
28  AAGGCGTTTC  1  28  11 EST (AI018551)  
27  GTGCTATTCT  0  27  13 No match  
26  CTTACAAGCA  0  26  14  No match  
26  GTGCTATTCT  0  26  2  Prostaglandin D (M61901
Fold Tag Sequence No.GenBank Match (accession no.)
Mono GM M
288 GTATGGGCCC  0  288  182  Hc-gp39 (M80927)  
252 TGGCCCCAGG  6  1,515  1,261  Apolipoprotein C-1 (L13175)  
174  CGACCCCACG  6  1,044  657 Apolipoprotein E (M12529)  
151  TAAATCCCCA  1  151 154  Collagenase type IV (J05070)  
117  AACGGGGCCC 0  117  8  MDC (U83171)  
72  TCACCGGTCA  72  63  Gelsolin (X004412)  
71  GCCCCAGCCC  71  25  Chitotriosidase (U29615)  
64  TGTCCCAGCC 0  64  60  Acid phosphatase type 5 (X14618)  
58 CTGGACCCGG  1  58  16  No match  
40 CACCTCCTAT  0  40  95  No match  
39 AGAAGTGTCC  2  79  43  Lysosomal acid lipase (Z31690)  
39  TGGCCCCAAG  0  39  58  No match  
39  ACATTCTTTT  0  39  26  NMB (X76534)  
38  ACTATTTCCA  3  116  54  Fructose 1,6 bisphosphatase (M19922)  
37  CTCACCGCCC  0  37 31  Cellular retinoic binding protein II (M68867)  
35 TTATGGGGAG  0  35  4  Transformation-sensitive protein (M86752)  
34  GATGACCCCC  0  34  40  No match  
32  GCCATCCAGA  3  97  41  No match 
32  AATAGAAATT  0  32  42  Osteopontin (J04765
32  AAGATTGGTG  0  32  40  CD9 (M38690)  
31 GGTGGGGAGA  0  31  22  Clone LF113 (U18009)  
31 TCTTGATTTA  0  31  16  α 2 microglobulin (M11313)  
31  TTACAGAACT  1  31  11  LDL phospholipase A2 (U20157)  
31  ATGTGAAGAG  0  31  Osteonectin (J03040)  
30  ACCTTTACTG  0  30  11 No match  
30  TCTCAGATGA  2  60  13  Sterol 27-hydroxylase (M62401)  
28  AAGGCGTTTC  1  28  11 EST (AI018551)  
27  GTGCTATTCT  0  27  13 No match  
26  CTTACAAGCA  0  26  14  No match  
26  GTGCTATTCT  0  26  2  Prostaglandin D (M61901

The 30 transcripts displaying the largest increase in expression in macrophages are listed by fold induction. The tag sequence represents the 10-bp SAGE tag. The most probable GenBank matches are listed. No. indicates the number of times the tag was identified. Fold changes in expression were calculated as described in Fig 2. More information on this table is available on the Internet at (http://www.prevent.m.u-tokyo.ac.jp/SAGE.html).

Abbreviations: Mono, monocytes; GM, GM-CSF–induced-macrophages; M, M-CSF–induced macrophages.

Table 4 shows the top 30 transcripts decreased in GM-CSF–induced macrophages compared with monocytes. The decreased transcripts in GM-CSF–induced macrophages also showed a similar tendency in M-CSF–induced macrophages. The decrease in expression of MRP-8, MRP-14,21 and ficolin22genes has been described. The greatest decrease in mRNAs was identified for complement proteins; ficolin and properdin, DNA-binding protein; GOS3, GOS2, tristetraprolin,23 and core promoter element binding protein (CPBP). Furthermore, we investigated the difference in gene expression between GM-CSF– and M-CSF–induced macrophages (Table 5). Highly expressed genes in GM-CSF–induced macrophages, MDC, GA733-1, and osteonectin were not expressed in M-CSF–induced macrophages. On the other hand, M-CSF–induced macrophages expressed legumain, an asparaginyl endopeptidase,24 lysosomal sialoglycoprotein at a high level compared with GM-CSF–induced macrophages.

Table 4.

Transcripts Decreased in CSF-Induced Macrophage

Fold Tag Sequence No.GenBank Match (accession no.)
Mono GM M
287 TACCTGCAGA  287  0  13  MRP-8 (X06234)  
97 TGGAAGCACT  97  0  5  IL-8 (Y00787)  
81 CCCACAACCT  244  3  13  Ficolin-1 (S80990)  
77 CTTGACATAC  77  0  3  CL100 mRNA for tyrosin phosphatase (X68277)  
63  TCTACACGTG  63  0  Properdin (M83652)  
63  CTGATGGCGA  63  0  No match  
55  CTGTACTTGT  55  0  2  GOS3 protein (L49169)  
51  TGGAAAGTGA  51  0  c-fos (V01512)  
48  TGAAGTAACA  48  0  9  No match  
46  ACATTTCCAA  46  0  2  GOS 2 protein (M69199)  
44  ATGGTGGGGG  44  0  Tristetraprolin (M63625)  
42  TACATTCTGT  42  2  Myeloid cell differentiation protein (M63625)  
38 TGGAGAAGAG  38  1  3  No match  
33 GGCCACGTAG  65  2  9  No match  
32 TTAACCCTCT  32  1  2  No match  
31 CTCCATCCAG  31  1  7  G-CSF receptor (M59819
31  AGTGCACGTG  31  0  4  No match  
31 GGCCAGGACT  31  0  0  No match  
29 AGATGAGATG  29  0  3  DNA binding protein CPBP (U44975)  
27  TGAAGGATGC  27  0  5  Ribosomal protein isoform (M58459)  
27  CCCTGAGGCC  27  0  No match  
25  GTGGGCCACG  25  0  1  No match  
24  GGGAAACAGG  48  2  8  No match 
23  GTGGCCACGG  1,064  47  79  MRP-14 (M21064
21  ACCATTCTGC  21  1  1  Interferon-inducible mRNA (X02490)  
20  GCCGCCGTGC  20  0  0  No match  
19  CTTTTTTCCC  19  0  14  CD48 (M59904)  
19  TGCACCACAG  19  1  6  No match  
18  GCAAAACCCT  18  1  4  No match 
18  TTGGAGCACT  18  0  2  No match 
Fold Tag Sequence No.GenBank Match (accession no.)
Mono GM M
287 TACCTGCAGA  287  0  13  MRP-8 (X06234)  
97 TGGAAGCACT  97  0  5  IL-8 (Y00787)  
81 CCCACAACCT  244  3  13  Ficolin-1 (S80990)  
77 CTTGACATAC  77  0  3  CL100 mRNA for tyrosin phosphatase (X68277)  
63  TCTACACGTG  63  0  Properdin (M83652)  
63  CTGATGGCGA  63  0  No match  
55  CTGTACTTGT  55  0  2  GOS3 protein (L49169)  
51  TGGAAAGTGA  51  0  c-fos (V01512)  
48  TGAAGTAACA  48  0  9  No match  
46  ACATTTCCAA  46  0  2  GOS 2 protein (M69199)  
44  ATGGTGGGGG  44  0  Tristetraprolin (M63625)  
42  TACATTCTGT  42  2  Myeloid cell differentiation protein (M63625)  
38 TGGAGAAGAG  38  1  3  No match  
33 GGCCACGTAG  65  2  9  No match  
32 TTAACCCTCT  32  1  2  No match  
31 CTCCATCCAG  31  1  7  G-CSF receptor (M59819
31  AGTGCACGTG  31  0  4  No match  
31 GGCCAGGACT  31  0  0  No match  
29 AGATGAGATG  29  0  3  DNA binding protein CPBP (U44975)  
27  TGAAGGATGC  27  0  5  Ribosomal protein isoform (M58459)  
27  CCCTGAGGCC  27  0  No match  
25  GTGGGCCACG  25  0  1  No match  
24  GGGAAACAGG  48  2  8  No match 
23  GTGGCCACGG  1,064  47  79  MRP-14 (M21064
21  ACCATTCTGC  21  1  1  Interferon-inducible mRNA (X02490)  
20  GCCGCCGTGC  20  0  0  No match  
19  CTTTTTTCCC  19  0  14  CD48 (M59904)  
19  TGCACCACAG  19  1  6  No match  
18  GCAAAACCCT  18  1  4  No match 
18  TTGGAGCACT  18  0  2  No match 

The 30 transcripts displaying the largest decrease in expression in macrophages are listed by fold reduction. No. indicates the number of times the tag was identified. Conditions are as described in Fig 2. More information on this table is available on the Internet at (http://www.prevent.m.u-tokyo.ac.jp/SAGE.html).

Table 5.

Differential Tag Abundance in Two Types of Macrophages

Fold Tag Sequence No.GenBank Match (accession no.)
Mono GM M
GM/M  
 19  CCTTTTTCAA  4  19  1  No match 
 17  CAAATCCAAA  3  34  2  No match  
 15 CTGACAGTGA  11  15  1  RING6 for mRNA HLA class II α chain like product (X62744)  
 15  GCCTACCCGA  0  15 0  Pancreatic carcinoma marker GA733-1 (X13425)  
 15 AACGGGGCCC  0  117  8  MDC (D83171)  
 14 CCCGCCTCTT  4  14  0  No match  
 13 ACGGAACAAT  0  26  2  Prostaglandin D synthetase (M61901)  
 12  ATCGTGCGCT  10  12  0  TGF-β (M16658)  
 12  CGCACCTCCA  7  12  0  No match  
 12  CAGTTGCTAT  4  12  1  No match 
 12  GCCTGTCTGC  0  12  0  No match  
 12 TAAGCAGGAC  0  12  1  No match  
 12 GCCGGCCGGA  3  11  1  No match  
 11 ATGTGAAGAG  1  31  3  Osteonectin (J03040
 10  TTTGGGCCTA  49  10  1  Cystain-rich protein (U58630)  
M/GM  
 18  TTGGAACAAT  1  0  18 No match  
 17  GGGGCTTCTG  0  2  34 Legumain (D55696)  
 15  TGATGTTTGA  16  0  15 No match  
 15  TTGGCCCAAG  0  1  15  No match  
 14  CTTTTTTCCC  19  0  14  CD48 (M59904)  
 14  CACTCGTGTG  3  1  14  No match  
 14  CCTAACTGGA  0  1  14  No match 
 14  GAGGGAGTCC  0  1  14  No match  
 14 TGGGCTCTGA  0  1  14  Lysosomal sialoglycoprotein (D12676)  
 13  TACCTGCAGA  287  0  13  MRP-8 (X06234)  
 13  CCGAAGGGTC  10  0  13  No match  
 13  GGTTGGGGGC  3  0  13  No match 
 13  TTTGTCTGTG  0  1  13  No match  
 12 CCAAGAACAG  8  1  12  Preprogalanin (A28025
 12  CATCTAAACT  6  1  12  No match 
Fold Tag Sequence No.GenBank Match (accession no.)
Mono GM M
GM/M  
 19  CCTTTTTCAA  4  19  1  No match 
 17  CAAATCCAAA  3  34  2  No match  
 15 CTGACAGTGA  11  15  1  RING6 for mRNA HLA class II α chain like product (X62744)  
 15  GCCTACCCGA  0  15 0  Pancreatic carcinoma marker GA733-1 (X13425)  
 15 AACGGGGCCC  0  117  8  MDC (D83171)  
 14 CCCGCCTCTT  4  14  0  No match  
 13 ACGGAACAAT  0  26  2  Prostaglandin D synthetase (M61901)  
 12  ATCGTGCGCT  10  12  0  TGF-β (M16658)  
 12  CGCACCTCCA  7  12  0  No match  
 12  CAGTTGCTAT  4  12  1  No match 
 12  GCCTGTCTGC  0  12  0  No match  
 12 TAAGCAGGAC  0  12  1  No match  
 12 GCCGGCCGGA  3  11  1  No match  
 11 ATGTGAAGAG  1  31  3  Osteonectin (J03040
 10  TTTGGGCCTA  49  10  1  Cystain-rich protein (U58630)  
M/GM  
 18  TTGGAACAAT  1  0  18 No match  
 17  GGGGCTTCTG  0  2  34 Legumain (D55696)  
 15  TGATGTTTGA  16  0  15 No match  
 15  TTGGCCCAAG  0  1  15  No match  
 14  CTTTTTTCCC  19  0  14  CD48 (M59904)  
 14  CACTCGTGTG  3  1  14  No match  
 14  CCTAACTGGA  0  1  14  No match 
 14  GAGGGAGTCC  0  1  14  No match  
 14 TGGGCTCTGA  0  1  14  Lysosomal sialoglycoprotein (D12676)  
 13  TACCTGCAGA  287  0  13  MRP-8 (X06234)  
 13  CCGAAGGGTC  10  0  13  No match  
 13  GGTTGGGGGC  3  0  13  No match 
 13  TTTGTCTGTG  0  1  13  No match  
 12 CCAAGAACAG  8  1  12  Preprogalanin (A28025
 12  CATCTAAACT  6  1  12  No match 

Each of the 15 transcripts displaying the greatest difference between GM-CSF– and M-CSF–induced macrophages. No. indicates the number of times the tag was identified. Conditions are as described in Fig 2.

RT-PCR of genes represented in the SAGE analysis.

Although we obtained blood from a minimum of six healthy volunteers to find the average in gene expression, there could be differences in the gene expression between individual donor-derived cells. To address this question, we arbitrarily selected four differently expressed genes and evaluated them in three donor-derived samples by RT-PCR (Fig 3). The expression of each transcript was compared with SAGE data. GOS2 was highly expressed in monocytes; monocytes 42: GM-Mφ (GM-CSF–induced macrophages) 0: M-Mφ (M-CSF–induced macrophages) 2, MDC was highly expressed in GM-Mφ; monocytes 0: GM-Mφ 117: M-Mφ 8, GA733-1 was highly expressed in GM-Mφ; monocytes 0: GM-Mφ 15: M-Mφ 0, thymosin beta 10 was expressed in all cell types; monocytes 214: GM-Mφ 246: M-Mφ 266, legumain was highly expressed in M-Mφ; monocytes 0: GM-Mφ 2: M-Mφ 34. These results confirm our SAGE data for monocytes, GM-Mφ, and M-Mφ and establish the general expression profile of the identified genes.

Fig. 3.

RT-PCR analysis of genes expressed differently in monocytes, M-CSF–, and GM-CSF–induced macrophages. RT-PCR was performed on total RNA isolated from 1, human monocytes; 2, GM-CSF–induced macrophages; 3, M-CSF–induced macrophages. A, B, and C indicate different donors.

Fig. 3.

RT-PCR analysis of genes expressed differently in monocytes, M-CSF–, and GM-CSF–induced macrophages. RT-PCR was performed on total RNA isolated from 1, human monocytes; 2, GM-CSF–induced macrophages; 3, M-CSF–induced macrophages. A, B, and C indicate different donors.

Close modal

Heterogeneity within the mononuclear phagocyte system may be due to the microenvironment and local differences in the production of growth factors, such as GM-CSF and M-CSF. It is generally accepted that alveolar macrophages are derived from peripheral blood monocytes, and GM-CSF is a pivotal factor for the development of alveolar macrophages in lung.25 On the other hand, M-CSF also is crucial for some tissue macrophages because M-CSF–deficient mice have diminished or absent tissue macrophages in kidney, spleen, liver, and bone.26 To investigate more precisely the changes in gene expression during differentiation of the monocyte/macrophage lineage, we performed a SAGE in human blood monocytes and macrophages induced by GM-CSF or M-CSF.

A technology that identifies differentially expressed genes can provide an important tool for cell biology. Several methods, such as Northern blotting, RT-PCR, differential display, and subtraction have been useful in such studies. However, these technologies can analyze only limited numbers of genes, and quantitative analysis of the transcription of individual genes is difficult. SAGE allows for both the quantitative and simultaneous analysis of large numbers of transcripts (10,000 to 50,000 expressed genes). Thus, we chose to use SAGE for this purpose. SAGE analysis of 57,560, 57,463, and 55,856 tags from monocytes, GM-CSF–, and M-CSF–induced macrophages, respectively, allowed identification of 35,037 different transcripts. Interestingly, in macrophages, high expression of the genes encoding proteins in lipid metabolism (such as apolipoprotein E, osteopontin, CD9, sterol 27-hydroxylase,27 and lisosomal acid lipase28) were observed. These results suggest that alteration of lipid metabolism system in mononuclear phagocytes is associated with their differentiation, and that these changes may contribute to atherosclerosis.

The difference in gene expression between GM-CSF– and M-CSF–induced macrophages showed that a highly expressed gene in GM-CSF–induced macrophages, MDC, was not expressed in M-CSF–induced macrophages. MDC is a novel chemokine, which selectively attracts CCR4-positive Th2-type lymphocytes.29-31 Therefore, GM-CSF–induced macrophages could have a role in Th2 dominated immune diseases. On the other hand, M-CSF–induced macrophages expressed legumain, an asparaginyl endopeptidase,24 at a high level. However, the significance of selective high expression of legumain in M-CSF–induced macrophages remains to be examined. The hydrolysis of asparaginyl bond is prominent in the processing of lysosomal hydrolases such as cathepsin B, H, and D.32 Moreover, macrophages highly express cathepsin D mRNA (Table 2). Therefore, the high expression of legumain mRNA in M-CSF–induced macrophages may have a functional role in M-CSF–induced macrophages.

In conclusion, identification of the genes selectively expressed in human blood monocytes, GM-CSF–, and M-CSF–induced macrophages should provide useful information in defining the ontogeny, development, and function of cells in the monocyte and macrophage lineage. Furthermore, many of the novel genes identified as selectively expressed in monocytes, GM-CSF–, and M-CSF–induced macrophages should provide important clues to further studies of macrophage biology and, in combination with newly developed DNA microarrayer systems, may eventually be useful for the diagnosis of human diseases or the monitoring of their treatments.

We are very grateful to Drs V. Velculescu, L. Zhang, W. Zhou, B. Vogelstein, and K. Kinzler for their help in SAGE analysis and also to Dr C. Vestergaard for reviewing the manuscript.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

1
van Furth
R
Current view on the mononuclear phagocyte system.
Immunobiology
161
1982
178
2
Raff
HV
Picker
LJ
Stobo
JD
Macrophage heterogeneity in man.
J Exp Med
152
1980
581
3
Andreesen
R
Bross
KJ
Osterholz
J
Emmrich
F
Human macrophage maturation and heterogeneity: Analysis with a newly generated set of monoclonal antibodies to differentiation antigens.
Blood
67
1986
1257
4
Zhang
L
Zhou
W
Velculescu
VE
Kern
SE
Hruban
RH
Hamilton
SR
Vogelstein
B
Kinzler
KW
Gene expression profiles in normal and cancer cells.
Science
276
1997
1268
5
Velculescu
VE
Zhang
L
Zhou
W
Vogelstein
J
Basrai
MA
Bassett
DE
Jr
Hieter
P
Vogelstein
B
Kinzler
KW
Characterization of the yeast transcriptome.
Cell
88
1997
243
6
Velculescu
VE
Zhang
L
Vogelstein
B
Kinzler
KW
Serial analysis of gene expression.
Science
270
1995
484
7
Polyak
K
Xia
Y
Zweier
JL
Kinzler
KW
Vogelstein
B
A model for p53-induced apoptosis.
Nature
389
1997
300
8
Gasson
JC
Molecular physiology of granulocyte-macrophage colony-stimulating factor.
Blood
77
1991
1131
9
Hashimoto
S
Yamada
M
Yanai
N
Kawashima
T
Motoyoshi
K
Phenotypic change and proliferation of murine Kupffer cells by colony-stimulating factors.
J Interferon Cytokine Res
16
1996
237
10
Matuda
S
Akagawa
KS
Honda
M
Yokota
Y
Takebe
Y
Takemori
T
Suppression of HIV replication in human monocyte-derived macrophages induced by granulocyte/macrophage colony-stimulating factor.
AIDS Res Hum Retroviruses
11
1995
1131
11
Tushinski
RJ
Oliver
IT
Guilbert
LJ
Tynan
PW
Warner
JR
Stanley
ER
Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy.
Cell
28
1982
71
12
Madden
SL
Galella
EA
Zhu
J
Bertelsen
AH
Beaudry
GA
SAGE transcript profiles for p53-dependent growth regulation.
Oncogene
15
1997
1079
13
Chen
BD-M
Mueller
M
Chou
T-H
Role of granulocyte/macrophage colony-stimulating factor in the regulation of murine alveolar macrophage proliferation and differentiation.
J Immunol
141
1988
139
14
Hashimoto
S-i
Yamada
M
Motoyoshi
K
Akagawa
KS
Enhancement of macrophage-colony stimulating factor-induced growth and differentiation of human monocytes by interleukin-10.
Blood
89
1997
315
15
Krause
SW
Rehli
M
Kreutz
M
Schwarzfischer
L
Paulauskis
JD
Andreesen
R
Differential screening identifies genetic markers of monocyte to macrophage maturation.
J Leukoc Biol
60
1996
540
16
Kwiatkowski
DJ
Predominant induction of gelsolin and actin-binding protein during myeloid differentiation.
J Biol Chem
263
1988
13857
17
Zannis
VI
Cole
FS
Jackson
CL
Kurnit
DM
Karathanasis
SK
Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages.
Biochemistry
24
1985
4450
18
Ouchi
N
Kihara
S
Yamashita
S
Higashiyama
S
Nakagawa
T
Shimomura
I
Funahashi
T
Kameda-Takemura
K
Kawata
S
Taniguchi
N
Matsuzawa
Y
Role of membrane-anchored heparin-binding epidermal growth factor-like growth factor and CD9 on macrophages.
Biochem J
328
1997
923
19
Boot
RG
Renkema
GH
Strijland
A
van Zonneveld
AJ
Aerts
JM
Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages.
J Biol Chem
270
1995
26252
20
Kreutz
M
Fritsche
J
Andreesen
R
Krause
SW
Regulation of cellular retinoic acid binding protein (CRABP II) during human monocyte differentiation in vitro.
Biochem Biophys Res Commun
248
1998
830
21
Roth
J
Goebeler
M
Wrocklage
V
van den Bos
C
Sorg
C
Expression of the calcium-binding proteins MRP8 and MRP14 in monocytes is regulated by a calcium-induced suppressor mechanism.
Biochem J
301
1994
655
22
Lu
J
Le
Y
Kon
OL
Chan
J
Lee
SH
Biosynthesis of human ficolin, an Escherichia coli-binding protein, by monocytes: Comparison with the synthesis of two macrophage-specific proteins, C1q and the mannose receptor.
Immunology
89
1996
289
23
Worthington
MT
Amann
BT
Nathans
D
Berg
JM
Metal binding properties and secondary structure of the zinc-binding domain of Nup475.
Proc Natl Acad Sci USA
93
1996
13754
24
Chen
JM
Dando
PM
Rawlings
ND
Brown
MA
Young
NE
Stevens
RA
Hewitt
E
Watts
C
Barrett
AJ
Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase.
J Biol Chem
272
1997
8090
25
Nakata
K
Akagawa
KS
Fukayama
M
Hayashi
Y
Kadokura
M
Tokunaga
T
Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro.
J Immunol
147
1991
1266
26
Cecchini
MG
Dominguez
MG
Mocci
S
Wetterwald
A
Felix
R
Fleisch
H
Chisholm
O
Hofstetter
W
Pollard
JW
Stanley
ER
Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse.
Development
120
1994
1357
27
Babiker
A
Andersson
O
Lund
E
Xiu
RJ
Deeb
S
Reshef
A
Leitersdorf
E
Diczfalusy
U
Bjorkhem
I
Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport.
J Biol Chem
272
1997
26253
28
Rothe
G
Stohr
J
Fehringer
P
Gasche
C
Schmitz
G
Altered mononuclear phagocyte differentiation associated with genetic defects of the lysosomal acid lipase.
Atherosclerosis
130
1997
215
29
Chantry
D
DeMaggio
AJ
Brammer
H
Raport
CJ
Wood
CL
Schweickart
VL
Epp
A
Smith
A
Stine
JT
Walton
K
Tjoelker
L
Godiska
R
Gray
PW
Profile of human macrophage transcripts: Insights into macrophage biology and identification of novel chemokines.
J Leukoc Biol
64
1998
49
30
Andrew
DP
Chang
M-s
McNinch
J
Wathen
ST
Rihanek
M
Tseng
J
Spellberg
JP
Elias
CG
STCP-1 (MDC) CC chemokine acts specifically on chronically activated Th2 lymphocytes and is produced by monocytes on stimulation with Th2 cytokines IL-4 and IL-13.
J Immunol
161
1998
5027
31
Ward
SG
Bacon
K
Westwick
J
Chemokines and T lymphocytes: More than an attraction.
Immunity
9
1998
1
32
Yonezawa
S
Takahashi
T
Wang
X
Wong
RNS
Hartsuck
JA
Tang
J
Structure at the proteolytic processing region of cathepsin D.
J Biol Chem
263
1988
16504

Author notes

Address reprint requests to Kouji Matsushima, MD, PhD, Department of Molecular Preventive Medicine, School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; e-mail:koujim@m.u-tokyo.ac.jp.

Sign in via your Institution