We analyzed the effect of CD40 triggering on the fludarabine-induced apoptosis of B chronic lymphocytic leukemia (B-CLL) cells. Peripheral blood samples obtained from 15 patients were incubated with fludarabine in the absence or the presence of the anti-CD40 monoclonal antibody (MoAb) G28-5. In 12 patients a significant proportion of apoptotic cells, ranging from 22% to 38% (mean ± SE: 28.5 ± 1.6), were detected after 3 days of culture. In 9 of these samples, the addition of G28-5 reduced apoptosis by at least 30.1% and by 57.1% ± 7.8% on average (P = .0077). Because the CD40 antigen activates NF-κB/Rel transcription factors in B cells, and NF-κB/Rel complexes can inhibit cell apoptosis, we investigated whether the antiapoptotic effect of G28-5, in our system, could be related to modulation of NF-κB/Rel activity. As expected, B-CLL cells displayed significant levels of nuclear NF-κB/Rel activity; p50, RelA, and c-Rel components of the NF-κB/Rel protein family were identified in these complexes. After exposure to fludarabine, NF-κB/Rel complexes were decreased in the nuclei. The addition of G28-5 upregulated the NF-κB/Rel levels. To determine the involvement of NF-κB/Rel activity in the G28-5–mediated inhibition of apoptosis, we blocked the transcription factor with a decoy oligonucleotide, corresponding to the NF-κB/Rel consensus sequence. Cells incubated with the anti-CD40 MoAb in the presence of the decoy oligonucleotide but not a control oligonucleotide displayed a complete impairment of the G28-5 antiapoptotic effect, indicating that NF-κB/Rel activity was required for the inhibition of apoptosis. These results suggest that CD40 triggering in vivo could counteract the apoptotic effect of fludarabine on B-CLL cells and that its neutralization, or the use of NF-κB/Rel inhibitors, could improve the therapeutic effect of fludarabine.

© 1998 by The American Society of Hematology.

THE ABILITY TO induce apoptosis is a relevant property of several chemotherapeutic drugs.1Particularly, neoplasias that have a low growth fraction, such as chronic lymphocytic leukemia (CLL), might be more vulnerable to apoptotic stimuli than to agents that attack dividing cells. In these pathologies, the extent of drug-induced apoptosis correlates with the response to chemotherapy in vivo.2 Mechanisms that affect cell sensitivity to apoptosis, including mutations and/or altered expression of apoptosis-regulating genes such as p53,3,4 Rb,5 and bcl-2,6 are believed to play roles in CLL neoplastic expansion and resistance to chemotherapy. Furthermore, physiological modifiers of cell apoptosis—interferon (IFN)-α7 and -γ,8interleukin-4 (IL-4),9 basic fibroblast growth factor,10 and IL-1311—can protect CLL cells from death. The analysis of the complex arrays of factors that influence CLL apoptosis is needed for the understanding of the disease pathogenesis and the improvement of therapies.

Among the intracellular modulators of apoptosis, there are NF-κB/Rel transcription factors. These are dimers of proteins (p50/p105 or NF-κB1, p52/p100 or NF-κB2, p65 or RelA, c-Rel and RelB) that have approximately 300 aminoacid Rel regions. The NF-κB/Rel complexes are either found in cell nuclei or retained in the cytoplasm by inhibitors of the IκB (α-ε) family; these latter are proteolyzed on cell stimulation by a number of agents, allowing NF-κB/Rel dimers to reach the nucleus. The NF-κB/Rel factors control the expression of a wide range of genes, such as those encoding immunoglobulins, cytokines, chemokines, interferons, major histocompatibility complex proteins, growth factors, and cell adhesion molecules.12 Furthermore, the apoptotic response of some normal and neoplastic cell types to tumor necrosis factor (TNF) or daunorubicin13-16 can be downregulated by the NF-κB/Rel nuclear activity. In some cells, including B lymphocytes, the NF-κB/Rel complexes stimulate the expression of the zinc finger protein-coding gene A20 that inhibits apoptosis17; other apoptosis-suppressing, NF-κB/Rel–regulated genes will presumably be identified.

The induction of NF-κB/Rel activities by apoptogenic agents such as TNF-α is believed to constitute a pathway by which the apoptotic stimulus limits or terminates its own effect.13-16Independent mechanisms that result in NF-κB/Rel stimulation might be expected to inhibit apoptosis as well. In B cells, a possible link between NF-κB/Rel induction and the rescue from apoptosis might be recognized in the activity of CD40 antigen. This is a 45- to 50-kD transmembrane glycoprotein18-20 that belongs to the TNF receptor superfamily.21 The interaction between CD40 and its ligand CD40-L (CD154), expressed on activated T cells,19-23 can inhibit the normal and neoplastic B-cell apoptosis induced by engagement of the B-cell receptor (BcR) or serum deprivation.24-26 Because of its antiapoptotic properties, the CD40 molecule is believed to exert profound influences on the growth of B lymphocytes and to direct the T-lymphocyte–mediated rescue of germinal center B cells.19,20,27 Furthermore, the CD40 molecule appears functional in B-lineage acute lymphoblastic leukemia cells that can be stimulated to proliferate and maturate via CD40 triggering.28 In mouse spleen,29 human tonsilla, Daudi cells,30 and immature B cells,31 the triggering of CD40 induces the nuclear activity of NF-κB/Rel complexes. Although CD40 antigen interacts with the NF-κB/Rel intracellular inducer TRAF2,32 the NF-κB/Rel activation was found to be independent of the association with this molecule in B cells.33 

We investigated whether CD40 antigen could influence the apoptosis of B-CLL cells induced by fludarabine, and we also investigated the involvement of NF-κB/Rel factors in this regulation. The aim of this work was to contribute to the understanding of the mechanisms that regulate B-CLL apoptosis, and to the improvement of therapies active on slowly dividing malignancies.

Patients.

We studied 15 patients affected by B-cell CLL. Fourteen patients had a CD5+ CD23+ phenotype, whereas 1 patient was CD5+ CD23. These patients had a clinical Rai stage34 of 0 to 4 and had not received any therapy for at least 3 years before blood collection.

Cells.

Peripheral blood mononuclear cells were isolated from the heparinized blood of healthy donors by differential centrifugation through a Ficoll-Hypaque density gradient (ICN Flow, Opera, Italy) at 400g for 30 minutes. Cells were washed with phosphate-buffered saline (PBS) and resuspended in RPMI 1640 medium supplemented with 10% heat-inactivated fetal calf serum (FCS; ICN Flow).

Fludarabine, monoclonal antibodies (MoAbs), and oligonucleotides.

Fludarabine (9-β-D-arabinosyl-2-fluoroadenine-monophosphate) was obtained from Schering (SpA, Milan, Italy). The anti-CD40 MoAb-producing hybridoma (G28-5) was obtained from American Type Culture Collection. An anti-HLA-A1 MoAb, HO5, kindly provided by Dr Soldano Ferrone (New York Medical College, NY), was used as control. The phosphorothioate oligonucleotides, corresponding to the κB consensus sequence (5′-CCTTGAAGGGATTTCCCTCC-3′) or its mutated (“scrambled”) form (5′-CCTTGAATTTATTTAAATCC-3′)35,36were purchased from Primm Srl (Milan, Italy).

Analysis of apoptosis.

Apoptosis was measured by flow cytometry as described.37Briefly, the cells (5 × 105) were washed in PBS and resuspended in 1 mL of a solution containing 0.1% sodium citrate, 0.1% Triton X-100, and 50 μg/mL propidium iodide (Sigma Chemical Co, Gallarate, Italy). After incubation at 4°C for 30 minutes in the dark, cell nuclei were analyzed with a Becton Dickinson FACScan (Sunnyvale, CA) flow-cytometer using the Lysis 1 program. Cellular debris was excluded from analysis by raising the forward scatter threshold, and the DNA content of the nuclei was registered on a logarithmic scale. The percentage of cells in the hypodiploid region was calculated.

Immunofluorescence.

The cells (5 × 105/100 μL) were incubated with CD19 fluorescein isothiocyanate (FITC) or CD69 phycoerythrin (PE)-conjugated antibodies (Becton Dickinson) in 10% FCS/RPMI 1640 medium. After a 30-minute incubation at 4°C, the cells were washed in PBS and analyzed with the FACScan.

Nuclear extracts.

Cell nuclear extracts were prepared38 from 20 × 106 cells by cell pellet homogenization in two volumes of 10 mmol/L Hepes, pH 7.9; 10 mmol/L KCl; 1.5 mmol/L MgCl2; 1 mmol/L EDTA; 0.5 mmol/L dithiothreitol (DTT); 0.5 mmol/L phenylmethylsulfonyl fluoride; and 10% glycerol. Nuclei were centrifuged at 1,000g for 5 minutes, and washed and resuspended in two volumes of the above specified solution. KCl (3 mol/L) was added to reach 0.39 mol/L KCl. Nuclei were extracted at 4°C for 1 hour and centrifuged at 10,000g for 30 minutes. The supernatants were clarified by centrifugation and stored at −80°C. Protein concentration was determined by using the Bradford method.

Electrophoretic mobility shift assays (EMSAs).

The double-stranded κB oligonucleotide (Promega, Madison, WI) corresponded to the IL-2 receptor α NF-κB consensus sequence 5′-CAACGGCAGGGGAATCTCCCTCTCCTT-3′.39 The SP1 oligonucleotide was purchased from CEINGE (Naples, Italy). The oligonucleotides were end-labeled with [γ-32P] ATP (Amersham International Plc, Milan, Italy) using a polynucleotide kinase (Boehringer Mannheim, Milan, Italy) to a specific activity of 2 to 5 × 104 cpm/mL. The AP1 oligonucleotide was purchased from Promega. EMSAs were performed as described.40 Briefly, end-labeled DNA fragments (2 × 104) cpm were incubated at room temperature for 20 minutes with 5 μg of nuclear protein in the presence of 1 μg poly(dI-dC) in 20 μL of a buffer consisting of 10 mmol/L Tris-HCl, pH 7.5; 50 mmol/L NaCl; 1 mmol/L EDTA; 1 mmol/L DTT; and 5% glycerol. Protein-DNA complexes were separated from a free probe on a 5.5% polyacrilamide gel and run in 0.25× Tris borate buffer at 200 V for 3 hours at room temperature. The gels were dried and exposed to X-ray film (Kodak AR, Milan, Italy). The intensity of the bands, expressed as integrated optical density (O.D.), was measured by using NIH Image 1.61 for PowerMacintosh. The values were normalized by comparison with SP1 complex as an internal control.

Anti-p50, -p65 (Rel A), and -c Rel antibodies.

The rabbit antibodies against the C-terminal peptide (529-551) of human p65 and against the N-terminal peptide (1-21) of p105/p50 were kindly provided by Dr Warner C. Greene (Gladstone Institute of Virology and Immunology, San Francisco, CA). The rabbit antibodies against the C-terminal peptide (537-587) of c Rel were a kind gift of Dr Nancy Rice (Frederick Cancer Research and Development Center, Frederick, MD).

Statistical analysis.

Wilcoxon's test was used to perform statistical analysis of the results.

Effect of CD40 triggering on the fludarabine-induced apoptosis of B-CLL.

We incubated the cells of 15 patients with fludarabine (0.8 μg/mL) in the presence or absence of MoAb G28-5 and measured the percentage of apoptotic elements after 3 days of culture. In 3 samples very low levels of apoptosis (<10%) were detected in the presence of the drug. Twelve patients displayed apoptosis, with values ranging from 22% to 38% (mean ± SE: 28.5% ± 1.6%). In 9 of these samples (Fig 1A), the addition of MoAb G28-5 to the cultures reduced apoptosis by at least 30.1% and by 57.1% ± 7.8% on average. The inhibition of apoptosis was significant (P = .0077), because the apoptosis percentages were reduced from 28.3% ± 1.6% to 12.5% ± 2.6% in the presence of the anti-CD40 MoAb. In the remaining 3 cases, CD40 triggering did not reduce or slightly (≤10%) reduced the fludarabine-induced apoptosis (Fig 1B). A dose-response curve of the MoAb G28-5 effect is shown in Fig 2.

Fig. 1.

(A) Inhibition of fludarabine-induced apoptosis by the anti-CD40 MoAb G28-5. (B) Samples with no response or only low response to anti-CD40 MoAb. Cells (1 × 106/mL) from patients with B-CLL were incubated in 10% FCS-RPMI 1640 medium with fludarabine (0.8 μg/mL) and in the absence or presence of MoAb G28-5 (ascites, 1:1000). After 3 days of cell culture the percentages of apoptosis were calculated. Any experimental point has been performed in duplicate; standard deviations of the mean apoptosis values were less than 10%. The levels of apoptosis in cells incubated without fludarabine, either in the presence or the absence of anti-CD40 MoAb, were less than 10%.

Fig. 1.

(A) Inhibition of fludarabine-induced apoptosis by the anti-CD40 MoAb G28-5. (B) Samples with no response or only low response to anti-CD40 MoAb. Cells (1 × 106/mL) from patients with B-CLL were incubated in 10% FCS-RPMI 1640 medium with fludarabine (0.8 μg/mL) and in the absence or presence of MoAb G28-5 (ascites, 1:1000). After 3 days of cell culture the percentages of apoptosis were calculated. Any experimental point has been performed in duplicate; standard deviations of the mean apoptosis values were less than 10%. The levels of apoptosis in cells incubated without fludarabine, either in the presence or the absence of anti-CD40 MoAb, were less than 10%.

Close modal
Fig. 2.

Dose-response curve of MoAb G28-5 antiapoptotic effect. B-CLL cells (1 × 106/mL) were incubated in 10% FCS-RPMI 1640 medium with fludarabine (0.8 μg/mL) in the presence of the indicated concentrations of MoAb G28-5 or control (HO5) antibody. After 3 days of cell culture, the apoptosis percentages were calculated.

Fig. 2.

Dose-response curve of MoAb G28-5 antiapoptotic effect. B-CLL cells (1 × 106/mL) were incubated in 10% FCS-RPMI 1640 medium with fludarabine (0.8 μg/mL) in the presence of the indicated concentrations of MoAb G28-5 or control (HO5) antibody. After 3 days of cell culture, the apoptosis percentages were calculated.

Close modal
Analysis of NF-κB/Rel activity in B-CLL cells.

In cells obtained from 13 of the 15 patients studied, we could analyze the nuclear levels of NF-κB/Rel complexes by EMSA. Twelve of the 13 samples showed a migration pattern in which four bands could be recognized. A representative result is shown in Fig3. The bands indicated by arrows 1 through 3 (a) appeared to correspond to specific NF-κB/Rel complexes because they were not affected by the incubation of the extract with unlabeled AP1 oligo, whereas (b) disappeared in the presence of a competing, unlabeled κB oligonucleotide (c). Band 4 was probably caused by the not specific binding of the labeled oligonucleotide to an abundant protein present in the nuclear extracts.41 To analyze the composition of the NF-κB/Rel complexes, the extract was incubated in the presence of rabbit anti-p50 (d), -RelA (e), –c-Rel (f) or preimmune (g) serum. The band indicated by arrow 1 was supershifted by both anti-p50 and -Rel A antibodies, whereas the band indicated by arrow 2 was supershifted by both anti-p50 and –c-Rel and band 3 only by anti-p50. Therefore, p50/RelA, p50/c-Rel, and p50/p50 dimers were likely to be present in the complexes corresponding to, respectively, bands 1, 2, and 3.

Fig. 3.

Analyses of NF-κB/Rel nuclear complexes in B-CLL cells. A nuclear extract was obtained from B-CLL cells and incubated with a32P-labeled κB oligonucleotide, in the absence (a) or presence of a 50× molar excess of unlabeled AP1 oligonucleotide (b), a 50× molar excess of unlabeled κB oligonucleotide (c), anti-p50 (d), -RelA (e), –c-Rel (f), or preimmune (g) serum.

Fig. 3.

Analyses of NF-κB/Rel nuclear complexes in B-CLL cells. A nuclear extract was obtained from B-CLL cells and incubated with a32P-labeled κB oligonucleotide, in the absence (a) or presence of a 50× molar excess of unlabeled AP1 oligonucleotide (b), a 50× molar excess of unlabeled κB oligonucleotide (c), anti-p50 (d), -RelA (e), –c-Rel (f), or preimmune (g) serum.

Close modal

In 9 of the 12 samples, fludarabine induced both apoptosis and a marked reduction of NF-κB/Rel levels; in the remaining 3 samples, the drug induced very low levels (<10%) of apoptosis and apparently did not modulate the NF-κB/Rel levels. Of the 9 fludarabine-responsive samples, 2 could not be rescued from drug-induced apoptosis by the anti-CD40 MoAb; consistently, the MoAb did not upregulate the NF-κB/Rel activity. The remaining 7 samples displayed both inhibition of apoptosis and induction of NF-κB/Rel complexes by MoAb G28-5. A representative result is shown in Fig 4. Compared with cells incubated in control medium (A, a), cells incubated with fludarabine (A, b) displayed a reduction in the intensities of the bands, corresponding to NF-κB/Rel-DNA complexes (arrows 1 through 3). The intensities of these bands were markedly higher in cells incubated with MoAb G28-5, either alone (A, c) or with fludarabine (A, d).

Fig. 4.

Effect of fludarabine and anti-CD40 MoAb on NF-κB/Rel nuclear complexes. B-CLL cells (1 × 106/mL) were incubated in 10% FCS-RPMI 1640 medium, in the absence (a) or presence of fludarabine (0.8 μg/mL) (b), MoAb G28-5 (10 μg/mL) (c), or MoAb G28-5 + fludarabine (d). After 20 hours, nuclear extracts were obtained and incubated with a 32P-labeled κB (A) or SP-1 (B) oligonucleotide. The DNA-protein complexes were analyzed by EMSA. The SP1-normalized integrated O.D. (×10−2) (see Materials and Methods) of the bands 1 + 2 were: a, 1.1; b, 0.2; c, 3.9; d, 2.7.

Fig. 4.

Effect of fludarabine and anti-CD40 MoAb on NF-κB/Rel nuclear complexes. B-CLL cells (1 × 106/mL) were incubated in 10% FCS-RPMI 1640 medium, in the absence (a) or presence of fludarabine (0.8 μg/mL) (b), MoAb G28-5 (10 μg/mL) (c), or MoAb G28-5 + fludarabine (d). After 20 hours, nuclear extracts were obtained and incubated with a 32P-labeled κB (A) or SP-1 (B) oligonucleotide. The DNA-protein complexes were analyzed by EMSA. The SP1-normalized integrated O.D. (×10−2) (see Materials and Methods) of the bands 1 + 2 were: a, 1.1; b, 0.2; c, 3.9; d, 2.7.

Close modal
Effect of NF-κB/Rel inhibition on the antiapoptotic activity of MoAb G28-5.

To determine whether the NF-κB/Rel activity was required for the antiapoptotic effect of the MoAb G28-5, we incubated the cells with a decoy oligonucleotide, corresponding to the κB consensus sequence.35 The oligonucleotide subtracts NF-κB/Rel complexes, resulting in a decrease of their nuclear levels and impairment of target genes expression.35,36,42,43 We verified that in cells triggered via CD40, the increase of the NF-κB/Rel–controlled CD69 antigen44 was inhibited by the decoy, but not by a mutated form (“scrambled”) oligonucleotide (Fig 5A). Furthermore, the levels of nuclear NF-κB/Rel complexes, stimulated by CD40 (Fig 5B, lane b), were reduced in cultures incubated with the decoy (lane c) but not the scrambled (lane d) oligonucleotide. In five different experiments, we compared the effects of the MoAb G28-5 on the apoptotic responses of the cells incubated with fludarabine in the absence or presence of decoy or scrambled oligonucleotides. The results are shown in Fig6. The presence of the decoy oligonucleotide slightly modified the apoptosis percentages of cells incubated with or without fludarabine. Therefore, the inhibition of NF-κB/Rel complexes was not sufficient to induce or significantly enhance cell apoptosis. On the other hand, the rescuing effect of MoAb G28-5 was specifically abolished by cell incubation with the decoy oligonucleotide.

Fig. 5.

Effect of a κB decoy oligonucleotide on CD69 expression (A) and the levels of NF-κB/Rel nuclear complexes (B) in CD40-stimulated B-CLL cells. (A) B-CLL cells (1 × 106/mL) were stimulated with anti-CD40 MoAb (10 μg/mL) in the absence or the presence of the 5-μmol/L κB decoy or scrambled oligonucleotide. After 3 days the cells were collected, washed, incubated with CD69 PE and CD19 FITC, and analyzed by FACScan. The proportion of the CD19+ cells in the different cultures was 74.8 ± 2.4. (□), Medium; (▪), anti-CD40 MoAb. (B) B-CLL cells (1 × 106/mL) were incubated in 10% FCS-RPMI 1640 medium (a), and with anti-CD40 MoAb (10 μg/mL) in the absence (b) or presence of the 5-μmol/L κB decoy (c) or scrambled (d) oligonucleotide. After 20 hours, nuclear extracts were obtained and incubated with the 32P-labeled κB oligonucleotide. The DNA-protein complexes were analyzed by EMSA.

Fig. 5.

Effect of a κB decoy oligonucleotide on CD69 expression (A) and the levels of NF-κB/Rel nuclear complexes (B) in CD40-stimulated B-CLL cells. (A) B-CLL cells (1 × 106/mL) were stimulated with anti-CD40 MoAb (10 μg/mL) in the absence or the presence of the 5-μmol/L κB decoy or scrambled oligonucleotide. After 3 days the cells were collected, washed, incubated with CD69 PE and CD19 FITC, and analyzed by FACScan. The proportion of the CD19+ cells in the different cultures was 74.8 ± 2.4. (□), Medium; (▪), anti-CD40 MoAb. (B) B-CLL cells (1 × 106/mL) were incubated in 10% FCS-RPMI 1640 medium (a), and with anti-CD40 MoAb (10 μg/mL) in the absence (b) or presence of the 5-μmol/L κB decoy (c) or scrambled (d) oligonucleotide. After 20 hours, nuclear extracts were obtained and incubated with the 32P-labeled κB oligonucleotide. The DNA-protein complexes were analyzed by EMSA.

Close modal
Fig. 6.

Effect of the κB decoy oligonucleotide on the levels of B-CLL cell apoptosis. B-CLL cells (1 × 106/mL) were incubated in 10% FCS-RPMI 1640 medium, in the presence of the indicated reagents. After a 3-day incubation, cell apoptosis was analyzed. (▧), RPMI; (▪), decoy 5 μmol/L; (□), scrambled 5 μmol/L.

Fig. 6.

Effect of the κB decoy oligonucleotide on the levels of B-CLL cell apoptosis. B-CLL cells (1 × 106/mL) were incubated in 10% FCS-RPMI 1640 medium, in the presence of the indicated reagents. After a 3-day incubation, cell apoptosis was analyzed. (▧), RPMI; (▪), decoy 5 μmol/L; (□), scrambled 5 μmol/L.

Close modal

These results show that CD40 antigen modulates the fludarabine-induced apoptosis in B-CLL lymphocytes. The CD40 effects were analyzed in unfractionated mononucleate cell populations, which, when cultured, displayed a low proportion of apoptotic elements (<10%), compared with the spontaneous apoptosis percentages observed in purified B leukemic cells.11,45-48 However, in three cases, in which the 15%, 41%, and 73% of spontaneous apoptosis were detected after 5 days of culture, the presence of anti-CD40 MoAb did not reduce such percentages, in accord with results reported by other authors49 (results not shown). On the other hand, in fludarabine-treated cultures, the CD40 triggering rescued the cells from apoptosis. Therefore, in addition to inhibiting the spontaneous or BcR-induced apoptosis of normal B cells and B-cell lines,18,19 24-27 CD40 appears to regulate also the chemotherapeutic drug-induced apoptosis in cells from patients with B-CLL.

A constitutive activity of NF-κB/Rel activity was found in B-CLL. The complexes comprised p50 homodimers, p50/c-Rel, and p50-RelA heterodimers. This pattern is similar to those described in immature and mature B-cell lines.12,50 Cell incubation with fludarabine resulted in the disappearance of the nuclear NF-κB/Rel activity. This might rely on a reduced production of NF-κB/Rel proteins, due to the fludarabine-caused hampering of RNA synthesis. Alternatively, the drop in NF-κB/Rel nuclear activity might be induced during the apoptosis program—consistently, a decline in NF-κB/Rel nuclear levels had been observed during the BcR-induced apoptosis of murine B cells.51 However, although being part of the fludarabine activity, the downmodulation of NF-κB/Rel nuclear factors is not likely to be sufficient for the triggering of apoptosis. Indeed, the block of NF-κB/Rel complexes, obtained by incubating the cells with the decoy oligonucleotide alone, did not result in inducing apoptosis.

On CD40 triggering, the nuclear levels of NF-κB/Rel complexes were increased. When the NF-κB/Rel complexes were blocked by the presence of a decoy oligonucleotide, the antiapoptotic activity of CD40 was also abrogated. This strongly argues for a role of NF-κB/Rel complexes in the antiapoptotic activity of CD40. Whether A2051and/or other NF-κB/Rel–controlled genes induced by CD40 triggering are responsible for the antiapoptotic mechanism remains to be determined.

These results suggest that the CD40-mediated survival pathway, triggered by CD40-L–expressing T lymphocytes,19-23 could counteract the therapeutic effect of fludarabine, and possibly other apoptogenic drugs in vivo. Furthermore, the CD40-mediated regulation of fludarabine-induced apoptosis in B-CLL cells can represent a model of NF-κB/Rel–controlled response to chemotherapy in a lymphoid tumor. This example supports the possible use of NF-κB/Rel inhibitors in antitumour therapies.52 Reagents, like anti–CD40-L antibodies, that neutralize NF-κB/Rel–stimulating molecules of the cell's environment could as well potentiate the therapeutic effect of the drug.

Finally, the question arises whether the CD40-mediated antiapoptotic pathway, active in B-CLL cells, can contribute to the prolonged life span and accumulation of these leukemic cells53 as a part of the pathogenetic mechanism of the disease. The role of CD40/CD40-L system in cell resistance to apoptotic drugs should, as well, be investigated.

We thank Dr Antonella De Pascale (Schering SpA, Milan, Italy) and Dr Felicetto Ferrara (Cardarelli Hospital, Naples, Italy) for providing us with the fludarabine. We also thank Carmine Del Gaudio for his excellent technical help.

Supported by AIRC, FSN 96, and Regione Campania.

M.C.T. and S.V. equally contributed to this work.

Address reprint requests to M. Caterina Turco, MD, Dipartimento di Biochimica e Biotecnologie Mediche, University of Napoli, Federico II, Via S Pansini, 5, 80131 Napoli, Italia; e-mail:turco@dbbm.unina.it.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" is accordance with 18 U.S.C. section 1734 solely to indicate this fact.

1
Thompson
 
CB
Apoptosis in the pathogenesis and treatment of disease.
Science
267
1995
1456
2
Huang
 
P
Robertson
 
LE
Wright
 
S
Plunkett
 
W
High molecular weight DNA fragmentation: A critical event in nucleoside analogous-induced apoptosis in leukemia cells.
Clin Cancer Res
1
1995
1005
3
el Rouby
 
S
Thomas
 
A
Costin
 
D
Rosenberg
 
CR
Potmesil
 
M
Silber
 
R
Newcomb
 
EW
p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression.
Blood
82
1993
3452
4
Fenaux
 
P
Preudhomme
 
C
Lay
 
JL
Quiquandon
 
I
Jonveaux
 
P
Vanrumbeke
 
M
Sartiaux
 
C
Morel
 
P
Loucheux
 
LMH
Bauters
 
F
Berger
 
R
Kerchalt
 
JP
Mutations of p53 gene in B-cell chronic lymphocytic leukemia: A report on 39 cases with cytogenetic analysis.
Leukemia
6
1992
246
5
Liu
 
Y
Grander
 
D
Soderhall
 
S
Juliusson
 
B
Gahrton
 
G
Einhorn
 
S
Retinoblastoma gene deletions in B-cell chronic lymphocytic leukemia.
Genes Chromosomes Cancer
4
1992
250
6
Hanada
 
M
Delia
 
D
Aiello
 
A
Stadtmauer
 
E
Reed
 
JC
Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia.
Blood
82
1993
1820
7
Jewell
 
AP
Worman
 
CP
Lydyard
 
PM
Yong
 
KL
Giles
 
FJ
Goldstone
 
AH
Interferon-α up-regulates bcl-2 expression and protects B-CLL cells from apoptosis in vitro and in vivo.
Br J Haematol
88
1994
268
8
Buschle
 
M
Campana
 
D
Carding
 
SR
Richard
 
C
Hoffbrand
 
AV
Brenner
 
MK
Interferon gamma inhibits apoptotic cell death in B-cell chronic lymphocytic leukemia.
J Exp Med
177
1993
213
9
Panayiotidis
 
P
Ganeshaguru
 
K
Jabbar
 
SA
Hoffbrand
 
AV
Interleukin-4 inhibits apoptotic cell death and loss of the bcl-2 protein in B-cell chronic lymphocytic leukemia.
Br J Haematol
85
1993
439
10
Menzel
 
T
Rahman
 
Z
Calleja
 
E
White
 
K
Wilson
 
EL
Wieder
 
R
Gabrilove
 
J
Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic lymphocytic leukemia and is associated with resistance to fludarabine.
Blood
87
1996
1056
11
Chaouchi
 
N
Wallon
 
C
Goujard
 
C
Tertian
 
G
Rudent
 
A
Caput
 
D
Ferrera
 
P
Minty
 
A
Vasquez
 
A
Delfraissy
 
JF
Interleukin-13 inhibits interleukin-2-induced proliferation and protects chronic lymphocytic leukemia B cells from in vitro apoptosis.
Blood
87
1996
1022
12
Baldwin AS Jr
 
The NF-κB and IκB proteins: New discoveries and insights.
Annu Rev Immunol
14
1996
649
13
Beg
 
AA
Baltimore
 
D
An essential role for NF-κB in preventing TNF-α–induced cell death.
Science
274
1996
782
14
Wang
 
C-I
Mayo
 
MW
Baldwin AS Jr
 
TNF- and cancer therapy induced apoptosis: Potentiation by inhibition of NF-κB.
Science
274
1996
784
15
Van Antwerp
 
DJ
Martin
 
SJ
Kafri
 
T
Green
 
DR
Verma
 
IM
Suppression of TNF-α-induced apoptosis by NF-κB.
Science
274
1996
787
16
Liu
 
Z
Hsu
 
H
Goeddel
 
DV
Karin
 
M
Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death.
Cell
87
1996
565
17
Laherty
 
CD
Perkins
 
ND
Dixit
 
VM
Human T cell leukemia virus type I tax and phorbol 12-myristate 13-acetate induce expression of the A20 zinc finger protein by distinct mechanisms involving nuclear factor κB.
J Biol Chem
286
1993
5032
18
Clark
 
EA
CD40: A cytokine receptor in search of a ligand.
Tissue Antigens
36
1990
33
19
Banchereau
 
J
Bazan
 
F
Blanchard
 
D
Briére
 
F
Galizzi
 
JP
van Kooten
 
C
Liu
 
YJ
Rousset
 
F
Saekand
 
S
The CD40 antigen and its ligand.
Annu Rev Immunol
12
1994
881
20
Foy
 
MT
Aruffo
 
A
Bajorath
 
J
Buhlmann
 
JE
Noelle
 
RJ
Immune regulation by CD40 and its ligand GP39.
Annu Rev Immunol
14
1996
591
21
Smith
 
CA
Farrah
 
T
Goodwin
 
RG
The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death.
Cell
76
1994
959
22
Lane
 
P
Traunecker
 
A
Hubele
 
S
Inui
 
S
Lanzavecchia
 
A
Gray
 
D
Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes.
Eur J Immunol
22
1992
2573
23
Roy
 
M
Waldschmidt
 
T
Aruffo
 
A
Ledbetter
 
JA
Noelle
 
RJ
The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells.
J Immunol
151
1993
2497
24
Liu
 
YJ
Joshua
 
DE
Williams
 
GT
Smith
 
CA
Gordon
 
J
MacLennan
 
ICM
Mechanism of antigen-driven selection of germinal centres.
Nature
342
1989
929
25
Durie
 
FH
Foy
 
TM
Masters
 
SR
Laman
 
JD
Noelle
 
RJ
The role of CD40 in the regulation of humoral and cell-mediated immunity.
Immunol Today
15
1994
406
26
Lagresle
 
C
Bella
 
C
Daniel
 
PT
Krammer
 
PH
Defrance
 
T
Regulation of germinal center B cell differentiation. Role of the human APO-1/Fas (CD95) molecule.
J Immunol
154
1995
5746
27
Liu
 
YJ
Johnson
 
GD
Gordon
 
J
MacLennan
 
IC
Germinal centres in T-cell-dependent antibody responses.
Immunol Today
13
1992
17
28
Renard
 
N
Lafage-Pochitaloff
 
M
Durand
 
I
Duvert
 
V
Coignet
 
L
Bancherau
 
J
Saeland
 
S
Demonstration of functional CD40 in B-lineage acute lymphoblastic leukemia cells in response to T-cell CD40 ligand.
Blood
87
1996
5162
29
Lalmanach
 
GA
Chiles
 
TC
Parker
 
DC
Rothstein
 
TL
T cell-dependent induction of NF-κB in B cells.
J Exp Med
177
1993
1215
30
Berberich
 
I
Geraldine
 
LS
Clark
 
EA
Crosslinking CD40 on B cells rapidly activates nuclear factor-κB.
J Immunol
153
1994
4357
31
Tsubata
 
T
Wu
 
J
Honjo
 
T
B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40.
Nature
364
1993
645
32
Rothe
 
M
Sarma
 
V
Dixit
 
VM
Goeddel
 
DV
TRAF-2-mediated activation of NF-κB by TNF receptor 2 and CD40.
Science
269
1995
1424
33
Hsing
 
Y
Hostager
 
BS
Bishop
 
GA
Characterization of CD40 signaling determinants regulating nuclear factor-κB activation in B lymphocytes.
J Immunol
159
1997
4898
34
Rai
 
KR
Sawitsky
 
A
Cronkite
 
EP
Chanana
 
AD
Levy
 
RN
Pasternack
 
BS
Clinical staging of chronic lymphocytic leukemia.
Blood
46
1975
219
35
Neish
 
AS
Williams
 
AJ
Palmer
 
HJ
Whitley
 
MZ
Collins
 
T
Functional analysis of the human vascular cell adhesion molecule 1 promoter.
J Exp Med
176
1992
1583
36
Morishita
 
R
Sugimoto
 
T
Aoki
 
M
Kida
 
I
Tomita
 
N
Moriguchi
 
A
Maeda
 
K
Sawa
 
Y
Kaned
 
Y
Higaki
 
J
Ogihara
 
T
In vivo transfection of cis element “decoy” against nuclear factor-κB binding site prevents miocardial infarction.
Nat Med
8
1997
894
37
Nicoletti
 
I
Migliorati
 
G
Pagliacci
 
MC
Grignani
 
F
Ricciardi
 
CA
A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry.
J Immunol Methods
139
1991
271
38
Granelli-Piperno
 
A
Nolan
 
P
Nuclear transcription factors that bind to elements of the IL-2 promoter. Induction requirements in primary human T cells.
J Immunol
147
1991
2734
39
Molitor
 
JA
Walker
 
WH
Doerre
 
S
Ballard
 
DW
Greene
 
WC
NF-κB: A family of inducible and differentially expressed enhancer-binding proteins in human T cells.
Proc Natl Acad Sci USA
87
1990
10028
40
Romano
 
MF
Lamberti
 
A
Petrella
 
A
Bisogni
 
R
Tassone
 
P
Formisano
 
S
Venuta
 
S
Turco
 
MC
IL-10 inhibits nuclear factor-κB/Rel nuclear activity in CD3-stimulated human peripheral T lymphocytes.
J Immunol
156
1996
2119
41
Turco
 
MC
Romano
 
MF
Lamberti
 
A
Petrella
 
A
Bisogni
 
R
Sun
 
S-C
Ferrone
 
S
Bonelli
 
P
Cerra
 
M
Venuta
 
S
Induction of NF-κB/Rel nuclear activity in human peripheral T lymphocytes by anti-HLA class I monoclonal antibodies.
Tissue Antigens
50
1997
1
42
Goldring
 
EP
Narayanan
 
R
Lagadec
 
P
Jeannin
 
J-F
Transcriptional inhibition of the inducible nitric oxide synthase gene by competitive binding of NF-κB/Rel proteins.
Biochem Biophys Res Comm
209
1995
73
43
Sharma
 
HW
Perez
 
JR
Higgins-Sochaski
 
K
Hsiao
 
R
Narayanan
 
R
Transcription factors decoy approach to decipher the role of NF-κB in oncogenesis.
Anticancer Res
16
1996
61
44
Lopez-Cabrera
 
M
Munoz
 
E
Blazquez
 
MV
Ursa
 
MA
Santis
 
AG
Sanchez-Madrid
 
F
Transcriptional regulation of the gene encoding the human C-type lectin leucocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-α-responsive elements.
J Biol Chem
270
1995
21545
45
Collins
 
JR
Verschuer
 
LA
Harmon
 
BV
Prentice
 
RL
Popo
 
JH
Kerr
 
JF
Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukemia cells following their culture in vitro.
Br J Haematol
71
1989
43
46
Mc Conkey
 
DJ
Aguilar-Stantelises
 
M
Hartzell
 
P
Eriksson
 
I
Mellstedt
 
H
Orrenius
 
S
Jondal
 
M
Induction of DNA fragmentation in chronic B-lymphocytic leukemia cells.
J Immunol
146
1991
1072
47
Dancescu
 
M
Rubio-Trujillo
 
M
Biron
 
G
Bron
 
D
Delespesse
 
G
Sarfati
 
M
Interleukin 4 protects chronic lymphocytic leukemia B cells death by apoptosis and upregulates Bcl-2 expression.
J Exp Med
176
1992
1319
48
Buschle
 
M
Campana
 
D
Carding
 
SR
Richard
 
C
Hofbrand
 
V
Brenner
 
MK
Interferon γ inhibits apoptotic cell death in B cell chronic lymphocytic leukemia.
J Exp Med
177
1993
213
49
Buske
 
C
Gogowsky
 
G
Schreiber
 
K
Rave-Frank
 
M
Hiddemann
 
W
Wormann
 
B
Stimulation of B-chronic lymphocytic leukemia cells by murine fibroblast, IL-4, anti-CD40 antibodies, and the soluble CD40 ligand.
Exp Hematol
25
1997
329
50
Wu
 
M
Lee
 
H
Bellas
 
RE
Schauer
 
SL
Arsura
 
M
Katz
 
D
Fitzgerald
 
J
Rothstein
 
TL
Sherr
 
DH
Sonenshein
 
GE
Inhibition of NF-κB/Rel induces apoptosis of murine B cells.
EMBO J
15
1996
4682
51
Sarma
 
V
Lin
 
Z
Clark
 
L
Rust
 
BM
Tewari
 
M
Noelle
 
RJ
Dixit
 
VM
Activation of the B-cell surface receptor CD40 induces A20, a novel zinc finger protein that inhibits apoptosis.
J Biol Chem
270
1995
12343
52
Barinaga
 
M
Life death-balance within the cell.
Science
274
1996
724
53
Cheson
 
B
Bennet
 
J
Rai
 
K
Grever
 
M
Kay
 
N
Schiffer
 
C
Oken
 
M
Keating
 
M
Boldt
 
D
Kempin
 
S
Foon
 
K
Guidelines for the classification of chronic lymphocytic leukemia: Recommendations for the National Cancer Institute-sponsored working group.
Am J Hematol
29
1988
152
Sign in via your Institution