Abstract

Marginal zone lymphomas (MZLs) are a heterogeneous group of low-grade B-cell neoplasms classified into different entities by the current lymphoma classifications. They share some features, but differ significantly in clinical presentation, associated inflammatory conditions, anatomic sites of involvement, and molecular alterations. Etiopathogenesis is strongly linked to chronic antigenic stimulation and specific infections or autoimmune disorders for extranodal disease. Genetic hallmarks include constitutive NF-κB activation and common trisomies 3 and 18, alongside subtype-specific lesions such as translocations in extranodal MZL, recurrent KLF2/NOTCH2 mutations in both nodal and splenic MZL, and deletions involving chromosome 7q, predominantly observed in splenic MZL. Diagnosis can be challenging due to overlapping features with other lymphomas such as follicular and lymphoplasmacytic lymphomas; integrating morphology, immunophenotype, and molecular data is essential. Transformation to aggressive diffuse large B-cell lymphoma occurs in 3% to 15% of cases and is associated with the accumulation of genetic lesions, particularly in cell cycle, NF-κB, and epigenetic regulators, with subtype-specific drivers including TNFAIP3, TP53, and CDKN2A/B alterations. The tumor microenvironment plays a critical but understudied role, influenced by chronic antigen stimulation and involving complex interactions with immune cells that can promote immune suppression and influence therapeutic response. Understanding the heterogeneity of MZLs across their classification, genetic landscapes, and interaction with the microenvironment is crucial for accurate diagnosis, prognosis, and the development of effective targeted therapies.

1.
Alaggio
R
,
Amador
C
,
Anagnostopoulos
I
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1720
-
1748
.
2.
World Health Organization
.
Haematolymphoid Tumours
. (5th ed) .
International Agency for Research on Cancer
;
2024
.
3.
Campo
E
,
Jaffe
ES
,
Cook
JR
, et al
.
The International Consensus Classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee
.
Blood
.
2022
;
140
(
11
):
1229
-
1253
.
4.
Rossi
D
,
Bertoni
F
,
Zucca
E
.
Marginal-zone lymphomas
.
N Engl J Med
.
2022
;
386
(
6
):
568
-
581
.
5.
Cheah
CY
,
Seymour
JF
.
Marginal zone lymphoma: 2023 update on diagnosis and management
.
Am J Hematol
.
2023
;
98
(
10
):
1645
-
1657
.
6.
Thieblemont
C
,
Felman
P
,
Callet-Bauchu
E
, et al
.
Splenic marginal-zone lymphoma: a distinct clinical and pathological entity
.
Lancet Oncol
.
2003
;
4
(
2
):
95
-
103
.
7.
Arcaini
L
,
Bommier
C
,
Alderuccio
JP
, et al
.
Marginal zone lymphoma international prognostic index: a unifying prognostic index for marginal zone lymphomas requiring systemic treatment
.
EClinicalMedicine
.
2024
;
72
:
102592
.
8.
Xochelli
A
,
Kalpadakis
C
,
Gardiner
A
, et al
.
Clonal B-cell lymphocytosis exhibiting immunophenotypic features consistent with a marginal-zone origin: is this a distinct entity?
.
Blood
.
2014
;
123
(
8
):
1199
-
1206
.
9.
Zucca
E
,
Arcaini
L
,
Buske
C
, et al
.
Marginal zone lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up
.
Ann Oncol
.
2020
;
31
(
1
):
17
-
29
.
10.
Zucca
E
,
Bertoni
F
,
Vannata
B
,
Cavalli
F
.
Emerging role of infectious etiologies in the pathogenesis of marginal zone B-cell lymphomas
.
Clin Cancer Res
.
2014
;
20
(
20
):
5207
-
5216
.
11.
Zucca
E
,
Bertoni
F
,
Roggero
E
, et al
.
Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach
.
N Engl J Med
.
1998
;
338
(
12
):
804
-
810
.
12.
Wotherspoon
AC
,
Ortiz-Hidalgo
C
,
Falzon
MR
,
Isaacson
PG
.
Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma
.
Lancet
.
1991
;
338
(
8776
):
1175
-
1176
.
13.
Ferreri
AJM
,
Guidoboni
M
,
Ponzoni
M
, et al
.
Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas
.
J Natl Cancer Inst
.
2004
;
96
(
8
):
586
-
594
.
14.
Kütting
B
,
Bonsmann
G
,
Metze
D
,
Luger
TA
,
Cerroni
L
.
Borrelia burgdorferi-associated primary cutaneous B cell lymphoma: complete clearing of skin lesions after antibiotic pulse therapy or intralesional injection of interferon alfa-2a
.
J Am Acad Dermatol
.
1997
;
36
(
2 pt 2
):
311
-
314
.
15.
Roggero
E
,
Zucca
E
,
Mainetti
C
, et al
.
Eradication of Borrelia burgdorferi infection in primary marginal zone B-cell lymphoma of the skin
.
Hum Pathol
.
2000
;
31
(
2
):
263
-
268
.
16.
Lecuit
M
,
Abachin
E
,
Martin
A
, et al
.
Immunoproliferative small intestinal disease associated with Campylobacter jejuni
.
N Engl J Med
.
2004
;
350
(
3
):
239
-
248
.
17.
Segura-Rivera
R
,
Pina-Oviedo
S
.
Marginal zone lymphoma of extranodal sites: a review with an emphasis on diagnostic pitfalls and differential diagnosis with reactive conditions
.
Hum Pathol
.
2025
;
156
:
105683
.
18.
Walewska
R
,
Eyre
TA
,
Barrington
S
, et al
.
Guideline for the diagnosis and management of marginal zone lymphomas: a British Society of Haematology guideline
.
Br J Haematol
.
2024
;
204
(
1
):
86
-
107
.
19.
Du
MQ
.
EMZL at various sites: learning from each other
.
Blood
.
2025
;
145
(
19
):
2117
-
2127
.
20.
Bikos
V
,
Karypidou
M
,
Stalika
E
, et al
.
An immunogenetic signature of ongoing antigen interactions in splenic marginal zone lymphoma expressing IGHV1-2∗04 receptors
.
Clin Cancer Res
.
2016
;
22
(
8
):
2032
-
2040
.
21.
Rinaldi
A
,
Forconi
F
,
Arcaini
L
, et al
.
Immunogenetics features and genomic lesions in splenic marginal zone lymphoma
.
Br J Haematol
.
2010
;
151
(
5
):
435
-
439
.
22.
Traverse-Glehen
A
,
Bachy
E
,
Baseggio
L
, et al
.
Immunoarchitectural patterns in splenic marginal zone lymphoma: correlations with chromosomal aberrations, IGHV mutations, and survival. A study of 76 cases
.
Histopathology
.
2013
;
62
(
6
):
876
-
893
.
23.
Bikos
V
,
Darzentas
N
,
Hadzidimitriou
A
, et al
.
Over 30% of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications
.
Leukemia
.
2012
;
26
(
7
):
1638
-
1646
.
24.
Zibellini
S
,
Capello
D
,
Forconi
F
, et al
.
Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma
.
Haematologica
.
2010
;
95
(
10
):
1792
-
1796
.
25.
Xochelli
A
,
Bikos
V
,
Polychronidou
E
, et al
.
Disease-biased and shared characteristics of the immunoglobulin gene repertoires in marginal zone B cell lymphoproliferations
.
J Pathol
.
2019
;
247
(
4
):
416
-
421
.
26.
Suarez
F
,
Lefrere
F
,
Besson
C
,
Hermine
O
.
Splenic lymphoma with villous lymphocytes, mixed cryoglobulinemia and HCV infection: deciphering the role of HCV in B-cell lymphomagenesis
.
Dig Liver Dis
.
2007
;
39
(
suppl 1
):
S32
-
S37
.
27.
Du
M
,
Diss
TC
,
Xu
C
,
Peng
H
,
Isaacson
PG
,
Pan
L
.
Ongoing mutation in MALT lymphoma immunoglobulin gene suggests that antigen stimulation plays a role in the clonal expansion
.
Leukemia
.
1996
;
10
(
7
):
1190
-
1197
.
28.
Bertoni
F
,
Cazzaniga
G
,
Bosshard
G
, et al
.
Immunoglobulin heavy chain diversity genes rearrangement pattern indicates that MALT-type gastric lymphoma B cells have undergone an antigen selection process
.
Br J Haematol
.
1997
;
97
(
4
):
830
-
836
.
29.
Conconi
A
,
Bertoni
F
,
Pedrinis
E
, et al
.
Nodal marginal zone B-cell lymphomas may arise from different subsets of marginal zone B lymphocytes
.
Blood
.
2001
;
98
(
3
):
781
-
786
.
30.
Zucca
E
,
Bertoni
F
,
Roggero
E
, et al
.
Autoreactive B cell clones in marginal-zone B cell lymphoma (MALT lymphoma) of the stomach
.
Leukemia
.
1998
;
12
(
2
):
247
-
249
.
31.
Bende
RJ
,
Donner
N
,
Wormhoudt
TA
, et al
.
Distinct groups of autoantigens as drivers of ocular adnexal MALT lymphoma pathogenesis
.
Life Sci Alliance
.
2024
;
7
(
9
):
e202402841
.
32.
Craig
VJ
,
Arnold
I
,
Gerke
C
, et al
.
Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins
.
Blood
.
2010
;
115
(
3
):
581
-
591
.
33.
Bende
RJ
,
Aarts
WM
,
Riedl
RG
,
de Jong
D
,
Pals
ST
,
van Noesel
CJ
.
Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity
.
J Exp Med
.
2005
;
201
(
8
):
1229
-
1241
.
34.
Bende
RJ
,
Janssen
J
,
Beentjes
A
, et al
.
Salivary gland mucosa-associated lymphoid tissue-type lymphoma from Sjögren's syndrome patients in the majority express rheumatoid factors affinity-selected for IgG
.
Arthritis Rheumatol
.
2020
;
72
(
8
):
1330
-
1340
.
35.
Dagklis
A
,
Ponzoni
M
,
Govi
S
, et al
.
Immunoglobulin gene repertoire in ocular adnexal lymphomas: hints on the nature of the antigenic stimulation
.
Leukemia
.
2012
;
26
(
4
):
814
-
821
.
36.
Efremov
DG
,
Turkalj
S
,
Laurenti
L
.
Mechanisms of B cell receptor activation and responses to B cell receptor inhibitors in B cell malignancies
.
Cancers (Basel)
.
2020
;
12
(
6
):
1396
.
37.
Zaragoza-Infante
L
,
Agathangelidis
A
,
Papaioannou
M
,
Chatzidimitriou
A
,
Stamatopoulos
K
.
The B cell receptor in marginal zone lymphoma ontogeny and evolution
.
Ann Lymphoma
.
2020
;
4
:
10
.
38.
Laurent
C
,
Cook
JR
,
Yoshino
T
,
Quintanilla-Martinez
L
,
Jaffe
ES
.
Follicular lymphoma and marginal zone lymphoma: how many diseases?
.
Virchows Arch
.
2023
;
482
(
1
):
149
-
162
.
39.
de Leval
L
,
Alizadeh
AA
,
Bergsagel
PL
, et al
.
Genomic profiling for clinical decision making in lymphoid neoplasms
.
Blood
.
2022
;
140
(
21
):
2193
-
2227
.
40.
Zhang
LF
,
Zhang
Y
,
Shui
RH
, et al
.
MNDA expression and its value in differential diagnosis of B-cell non-Hodgkin lymphomas: a comprehensive analysis of a large series of 1293 cases
.
Diagn Pathol
.
2024
;
19
(
1
):
60
.
41.
Wang
Z
,
Cook
JR
.
IRTA1 and MNDA expression in marginal zone lymphoma: utility in differential diagnosis and implications for classification
.
Am J Clin Pathol
.
2019
;
151
(
3
):
337
-
343
.
42.
Fischbach
W
,
Eck
M
,
Rosenwald
A
.
From modern pathogenetic insights and molecular understanding to new deescalating therapeutic strategies in gastric MALT-lymphoma
.
Z Gastroenterol
.
2024
;
62
(
11
):
1952
-
1962
.
43.
Mollejo
M
,
Piris
MA
.
The complex pathology and differential diagnosis of splenic and nodal marginal zone lymphoma
.
Ann Lymphoma
.
2020
;
4
:
18
.
44.
Zamò
A
,
van den Brand
M
,
Climent
F
, et al
.
The many faces of nodal and splenic marginal zone lymphomas. A report of the 2022 EA4HP/SH Lymphoma Workshop
.
Virchows Arch
.
2023
;
483
(
3
):
317
-
331
.
45.
Baseggio
L
,
Traverse-Glehen
A
,
Petinataud
F
, et al
.
CD5 expression identifies a subset of splenic marginal zone lymphomas with higher lymphocytosis: a clinico-pathological, cytogenetic and molecular study of 24 cases
.
Haematologica
.
2010
;
95
(
4
):
604
-
612
.
46.
Matutes
E
,
Oscier
D
,
Montalban
C
, et al
.
Splenic marginal zone lymphoma proposals for a revision of diagnostic, staging and therapeutic criteria
.
Leukemia
.
2008
;
22
(
3
):
487
-
495
.
47.
Gimeno
E
,
Salido
M
,
Solé
F
, et al
.
CD5 negative and CD5 positive splenic marginal B-cell lymphomas have differential cytogenetic patterns
.
Leuk Res
.
2005
;
29
(
8
):
981
-
982
.
48.
Spina
V
,
Mensah
AA
,
Arribas
AJ
.
Biology of splenic and nodal marginal zone lymphomas
.
Ann Lymphoma
.
2021
;
5
:
6
.
49.
Lue
JK
,
O'Connor
OA
,
Bertoni
F
.
Targeting pathogenic mechanisms in marginal zone lymphoma: from concepts and beyond
.
Ann Lymphoma
.
2020
;
4
:
7
.
50.
Novak
U
,
Rinaldi
A
,
Kwee
I
, et al
.
The NF-kB negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas
.
Blood
.
2009
;
113
(
20
):
4918
-
4921
.
51.
Honma
K
,
Tsuzuki
S
,
Nakagawa
M
, et al
.
TNFAIP3 is the target gene of chromosome band 6q23.3-q24.1 loss in ocular adnexal marginal zone B cell lymphoma
.
Genes Chromosomes Cancer
.
2008
;
47
(
1
):
1
-
7
.
52.
Cascione
L
,
Rinaldi
A
,
Bruscaggin
A
, et al
.
Novel insights into the genetics and epigenetics of MALT lymphoma unveiled by next generation sequencing analyses
.
Haematologica
.
2019
;
104
(
12
):
e558
-
e561
.
53.
Moody
S
,
Thompson
JS
,
Chuang
SS
, et al
.
Novel GPR34 and CCR6 mutation and distinct genetic profiles in MALT lymphomas of different sites
.
Haematologica
.
2018
;
103
(
8
):
1329
-
1336
.
54.
Bonfiglio
F
,
Bruscaggin
A
,
Guidetti
F
, et al
.
Genetic and phenotypic attributes of splenic marginal zone lymphoma
.
Blood
.
2022
;
139
(
5
):
732
-
747
.
55.
Kiel
MJ
,
Velusamy
T
,
Betz
BL
, et al
.
Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma
.
J Exp Med
.
2012
;
209
(
9
):
1553
-
1565
.
56.
Rossi
D
,
Trifonov
V
,
Fangazio
M
, et al
.
The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development
.
J Exp Med
.
2012
;
209
(
9
):
1537
-
1551
.
57.
Spina
V
,
Khiabanian
H
,
Messina
M
, et al
.
The genetics of nodal marginal zone lymphoma
.
Blood
.
2016
;
128
(
10
):
1362
-
1373
.
58.
Rinaldi
A
,
Mian
M
,
Chigrinova
E
, et al
.
Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome
.
Blood
.
2011
;
117
(
5
):
1595
-
1604
.
59.
Salido
M
,
Baró
C
,
Oscier
D
, et al
.
Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group
.
Blood
.
2010
;
116
(
9
):
1479
-
1488
.
60.
Fresquet
V
,
Robles
EF
,
Parker
A
, et al
.
High-throughput sequencing analysis of the chromosome 7q32 deletion reveals IRF5 as a potential tumour suppressor in splenic marginal-zone lymphoma
.
Br J Haematol
.
2012
;
158
(
6
):
712
-
726
.
61.
Mirandari
A
,
Parker
H
,
Ashton-Key
M
, et al
.
The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications
.
Explor Target Antitumor Ther
.
2024
;
5
(
4
):
877
-
901
.
62.
Remstein
ED
,
Law
M
,
Mollejo
M
,
Piris
MA
,
Kurtin
PJ
,
Dogan
A
.
The prevalence of IG translocations and 7q32 deletions in splenic marginal zone lymphoma
.
Leukemia
.
2008
;
22
(
6
):
1268
-
1272
.
63.
Martín-Subero
JI
,
Ibbotson
R
,
Klapper
W
, et al
.
A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation
.
Leukemia
.
2007
;
21
(
7
):
1532
-
1544
.
64.
Chen
D
,
Law
ME
,
Theis
JD
, et al
.
Clinicopathologic features of CDK6 translocation-associated B-cell lymphoproliferative disorders
.
Am J Surg Pathol
.
2009
;
33
(
5
):
720
-
729
.
65.
Oscier
DG
,
Matutes
E
,
Gardiner
A
, et al
.
Cytogenetic studies in splenic lymphoma with villous lymphocytes
.
Br J Haematol
.
1993
;
85
(
3
):
487
-
491
.
66.
Gailllard
B
,
Cornillet-Lefebvre
P
,
Le
QH
, et al
.
Clinical and biological features of B-cell neoplasms with CDK6 translocations: an association with a subgroup of splenic marginal zone lymphomas displaying frequent CD5 expression, prolymphocytic cells, and TP53 abnormalities
.
Br J Haematol
.
2021
;
193
(
1
):
72
-
82
.
67.
Carbo-Meix
A
,
Guijarro
F
,
Wang
L
, et al
.
BCL3 rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases
.
Haematologica
.
2024
;
109
(
2
):
493
-
508
.
68.
Parry
M
,
Rose-Zerilli
MJ
,
Ljungström
V
, et al
.
Genetics and prognostication in splenic marginal zone lymphoma: revelations from deep sequencing
.
Clin Cancer Res
.
2015
;
21
(
18
):
4174
-
4183
.
69.
Clipson
A
,
Wang
M
,
de Leval
L
, et al
.
KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype
.
Leukemia
.
2015
;
29
(
5
):
1177
-
1185
.
70.
Rossi
D
,
Deaglio
S
,
Dominguez-Sola
D
, et al
.
Alteration of BIRC3 and multiple other NF-kB pathway genes in splenic marginal zone lymphoma
.
Blood
.
2011
;
118
(
18
):
4930
-
4934
.
71.
Pseftogas
A
,
Bordini
J
,
Heltai
S
, et al
.
Loss of CYLD promotes splenic marginal zone lymphoma
.
Hemasphere
.
2025
;
9
(
3
):
e70098
.
72.
Leich
E
,
Salaverria
I
,
Bea
S
, et al
.
Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations
.
Blood
.
2009
;
114
(
4
):
826
-
834
.
73.
Nann
D
,
Ramis-Zaldivar
JE
,
Müller
I
, et al
.
Follicular lymphoma t(14;18)-negative is genetically a heterogeneous disease
.
Blood Adv
.
2020
;
4
(
22
):
5652
-
5665
.
74.
Leich
E
,
Zamo
A
,
Horn
H
, et al
.
MicroRNA profiles of t(14;18)-negative follicular lymphoma support a late germinal center B-cell phenotype
.
Blood
.
2011
;
118
(
20
):
5550
-
5558
.
75.
Yunis
JJ
,
Oken
MM
,
Kaplan
ME
,
Ensrud
KM
,
Howe
RR
,
Theologides
A
.
Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin's lymphoma
.
N Engl J Med
.
1982
;
307
(
20
):
1231
-
1236
.
76.
Biagi
JJ
,
Seymour
JF
.
Insights into the molecular pathogenesis of follicular lymphoma arising from analysis of geographic variation
.
Blood
.
2002
;
99
(
12
):
4265
-
4275
.
77.
Pan
Y
,
Meng
B
,
Sun
B
, et al
.
Frequencies of BCL2 and BCL6 translocations in representative Chinese follicular lymphoma patients: morphologic, immunohistochemical, and FISH analyses
.
Diagn Mol Pathol
.
2012
;
21
(
4
):
234
-
240
.
78.
Magnoli
F
,
Marchiori
D
,
Facchi
S
, et al
.
High frequency of BCL2 gene rearrangement-negative follicular lymphoma in northwestern Italy
.
Cancer Genet
.
2023
;
274-275
:
1
-
9
.
79.
Aster
JC
,
Longtine
JA
.
Detection of BCL2 rearrangements in follicular lymphoma
.
Am J Pathol
.
2002
;
160
(
3
):
759
-
763
.
80.
Los-de Vries
GT
,
Stevens
WBC
,
van Dijk
E
, et al
.
Genomic and microenvironmental landscape of stage I follicular lymphoma, compared with stage III/IV
.
Blood Adv
.
2022
;
6
(
18
):
5482
-
5493
.
81.
Galera
PK
,
Qualls
D
,
Aypar
U
, et al
.
BCL6 rearranged indolent B-cell lymphomas show mutational profile similar to marginal zone lymphomas [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
6396
-
6398
.
82.
Salmeron-Villalobos
J
,
Egan
C
,
Borgmann
V
, et al
.
A unifying hypothesis for PNMZL and PTFL: morphological variants with a common molecular profile
.
Blood Adv
.
2022
;
6
(
16
):
4661
-
4674
.
83.
Li
HG
,
Jiang
XN
,
Xue
T
, et al
.
Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma: additional evidence to support they are a single disease with variation in the histologic spectrum
.
Virchows Arch
.
2024
;
485
(
5
):
889
-
900
.
84.
Salaverria
I
,
Weigert
O
,
Quintanilla-Martinez
L
.
The clinical and molecular taxonomy of t(14;18)-negative follicular lymphomas
.
Blood Adv
.
2023
;
7
(
18
):
5258
-
5271
.
85.
Amaador
K
,
Thieblemont
C
,
Trotman
J
,
Minnema
MC
.
Recent updates in the indolent lymphomas: update on marginal zone lymphoma and Waldenström's macroglobulinemia
.
Hematol Oncol
.
2024
;
42
(
6
):
e3210
.
86.
Swerdlow
SH
,
Kuzu
I
,
Dogan
A
, et al
.
The many faces of small B cell lymphomas with plasmacytic differentiation and the contribution of MYD88 testing
.
Virchows Arch
.
2016
;
468
(
3
):
259
-
275
.
87.
Li
ZM
,
Rinaldi
A
,
Cavalli
A
, et al
.
MYD88 somatic mutations in MALT lymphomas
.
Br J Haematol
.
2012
;
158
(
5
):
662
-
664
.
88.
Ngo
VN
,
Young
RM
,
Schmitz
R
, et al
.
Oncogenically active MYD88 mutations in human lymphoma
.
Nature
.
2011
;
470
(
7332
):
115
-
119
.
89.
Yan
Q
,
Huang
Y
,
Watkins
AJ
, et al
.
BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas
.
Haematologica
.
2012
;
97
(
4
):
595
-
598
.
90.
Wu
F
,
Watanabe
N
,
Tzioni
MM
, et al
.
Thyroid MALT lymphoma: self-harm to gain potential T-cell help
.
Leukemia
.
2021
;
35
(
12
):
3497
-
3508
.
91.
Noy
A
,
de Vos
S
,
Coleman
M
, et al
.
Durable ibrutinib responses in relapsed/refractory marginal zone lymphoma: long-term follow-up and biomarker analysis
.
Blood Adv
.
2020
;
4
(
22
):
5773
-
5784
.
92.
Hunter
ZR
,
Yang
G
,
Xu
L
,
Liu
X
,
Castillo
JJ
,
Treon
SP
.
Genomics, signaling, and treatment of Waldenström macroglobulinemia
.
J Clin Oncol
.
2017
;
35
(
9
):
994
-
1001
.
93.
García-Abellás
P
,
Ferrer Gómez
A
,
Bueno Sacristán
D
, et al
.
Lymphoplasmacytic lymphoma and marginal zone lymphoma involving bone marrow: a diagnostic dilemma. Useful clinicopathological features to accurate the diagnosis
.
EJHaem
.
2022
;
3
(
4
):
1181
-
1187
.
94.
Shaheen
SP
,
Talwalkar
SS
,
Lin
P
,
Medeiros
LJ
.
Waldenström macroglobulinemia: a review of the entity and its differential diagnosis
.
Adv Anat Pathol
.
2012
;
19
(
1
):
11
-
27
.
95.
Paiva
B
,
Corchete
LA
,
Vidriales
MB
, et al
.
The cellular origin and malignant transformation of Waldenström macroglobulinemia
.
Blood
.
2015
;
125
(
15
):
2370
-
2380
.
96.
Falini
B
,
Martino
G
,
Lazzi
S
.
A comparison of the International Consensus and 5th World Health Organization classifications of mature B-cell lymphomas
.
Leukemia
.
2023
;
37
(
1
):
18
-
34
.
97.
Blombery
P
,
de Jong
D
,
Ferry
JA
, et al
.
Closing the gap between biology and classification in splenic B-cell lymphomas
.
Histopathology
.
2025
;
86
(
1
):
69
-
78
.
98.
Hanna
M
,
Trus
M
,
DiMaria
E
.
Splenic diffuse red pulp small B-cell lymphoma with overlapping clinical and immunophenotypic features with hairy cell leukaemia: a case report and a review of the literature
.
Genes (Basel)
.
2025
;
16
(
4
):
467
.
99.
Naresh
KN
.
Understanding splenic B-cell lymphoma/leukaemia with prominent nucleoli: diagnosis, underpinnings for disease classification and future directions
.
Br J Haematol
.
2024
;
205
(
6
):
2142
-
2152
.
100.
Wotherspoon
A
.
Pathology of extranodal marginal zone lymphoma at different anatomic sites
.
Ann Lymphoma
.
2020
;
4
:
15
.
101.
Conconi
A
,
Franceschetti
S
,
Aprile von Hohenstaufen
K
, et al
.
Histologic transformation in marginal zone lymphomas
.
Ann Oncol
.
2015
;
26
(
11
):
2329
-
2335
.
102.
Bommier
C
,
Link
BK
,
Gysbers
BJ
, et al
.
Transformation in marginal zone lymphoma: results from a prospective cohort and a meta-analysis of the literature
.
Blood Adv
.
2024
;
8
(
23
):
5939
-
5948
.
103.
Torka
P
,
Grover
NS
,
Voorhees
TJ
, et al
.
Impact of age on biology, presentation and outcomes in marginal zone lymphoma: results from a multicenter cohort study
.
Hematol Oncol
.
2025
;
43
(
3
):
e70087
.
104.
Grover
NS
,
Annunzio
K
,
Watkins
M
, et al
.
Evaluation of Ki-67 expression and large cell content as prognostic markers in MZL: a multicenter cohort study
.
Blood Cancer J
.
2024
;
14
(
1
):
182
.
105.
Stuver
R
,
Drill
E
,
Qualls
D
, et al
.
Retrospective characterization of nodal marginal zone lymphoma
.
Blood Adv
.
2023
;
7
(
17
):
4838
-
4847
.
106.
Petit
B
,
Chaury
MP
,
Le Clorennec
C
, et al
.
Indolent lymphoplasmacytic and marginal zone B-cell lymphomas: absence of both IRF4 and Ki67 expression identifies a better prognosis subgroup
.
Haematologica
.
2005
;
90
(
2
):
200
-
206
.
107.
Koh
J
,
Jang
I
,
Choi
S
, et al
.
Discovery of novel recurrent mutations and clinically meaningful subgroups in nodal marginal zone lymphoma
.
Cancers (Basel)
.
2020
;
12
(
6
):
1669
.
108.
Arribas
AJ
,
Rinaldi
A
,
Mensah
AA
, et al
.
DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features
.
Blood
.
2015
;
125
(
12
):
1922
-
1931
.
109.
Grau
M
,
López
C
,
Navarro
A
, et al
.
Unraveling the genetics of transformed splenic marginal zone lymphoma
.
Blood Adv
.
2023
;
7
(
14
):
3695
-
3709
.
110.
Chigrinova
E
,
Rinaldi
A
,
Kwee
I
, et al
.
Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome
.
Blood
.
2013
;
122
(
15
):
2673
-
2682
.
111.
Pasqualucci
L
,
Khiabanian
H
,
Fangazio
M
, et al
.
Genetics of follicular lymphoma transformation
.
Cell Rep
.
2014
;
6
(
1
):
130
-
140
.
112.
Li
A
,
Yi
H
,
Deng
S
, et al
.
The genetic landscape of histologically transformed marginal zone lymphomas
.
Cancer
.
2024
;
130
(
8
):
1246
-
1256
.
113.
Uhl
B
,
Prochazka
KT
,
Fechter
K
, et al
.
Impact of the microenvironment on the pathogenesis of mucosa-associated lymphoid tissue lymphomas
.
World J Gastrointest Oncol
.
2022
;
14
(
1
):
153
-
162
.
114.
Cascione
L
,
Mensah
AA
,
Arribas
A
, et al
.
Single cell RNA-seq of extranodal marginal zone lymphoma (MZL) identifies site-specific and shared features in both B and T cell components [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
3508
-
3509
.
115.
Blosse
A
,
Peru
S
,
Levy
M
, et al
.
APRIL-producing eosinophils are involved in gastric MALT lymphomagenesis induced by Helicobacter sp infection
.
Sci Rep
.
2020
;
10
(
1
):
14858
.
116.
Munari
F
,
Lonardi
S
,
Cassatella
MA
, et al
.
Tumor-associated macrophages as major source of APRIL in gastric MALT lymphoma
.
Blood
.
2011
;
117
(
24
):
6612
-
6616
.
117.
Anagnostou
T
,
Yang
ZZ
,
Jalali
S
, et al
.
Characterization of immune exhaustion and suppression in the tumor microenvironment of splenic marginal zone lymphoma
.
Leukemia
.
2023
;
37
(
7
):
1485
-
1498
.
118.
Cerapio
JP
,
Gravelle
P
,
Quillet-Mary
A
, et al
.
Integrated spatial and multimodal single-cell transcriptomics reveal patient-dependent cell heterogeneity in splenic marginal zone lymphoma
.
J Pathol
.
2024
;
263
(
4-5
):
442
-
453
.
119.
Arribas
AJ
,
Napoli
S
,
Cascione
L
, et al
.
Resistance to PI3Kδ inhibitors in marginal zone lymphoma can be reverted by targeting the IL-6/PDGFRA axis
.
Haematologica
.
2022
;
107
(
11
):
2685
-
2697
.
120.
Arribas
A
,
Napoli
S
,
Cascione
L
, et al
.
Il16 production is a mechanism of resistance to Btk inhibitors and to R-Chop
.
Hematol Oncol
.
2023
;
41
(
S2
):
188
-
189
.
121.
Arribas
AJ
,
Napoli
S
,
Cascione
L
, et al
.
ERBB4-mediated signaling is a mediator of resistance to PI3K and BTK inhibitors in B-cell lymphoid neoplasms
.
Mol Cancer Ther
.
2024
;
23
(
3
):
368
-
380
.
122.
Arribas
AJ
,
Napoli
S
,
Cascione
L
, et al
.
Abstract PO-46: Mechanisms of resistance to the PI3K inhibitor copanlisib in marginal zone lymphoma [abstract]
.
Blood Cancer Discov
.
2020
;
1
(
suppl 3
). Abstract PO-46.
123.
Jalali
S
,
Ansell
SM
.
Role of the bone marrow niche in supporting the pathogenesis of lymphoid malignancies
.
Front Cell Dev Biol
.
2021
;
9
:
692320
.
124.
Zhong
W
,
Zhu
Z
,
Xu
X
, et al
.
Human bone marrow-derived mesenchymal stem cells promote the growth and drug-resistance of diffuse large B-cell lymphoma by secreting IL-6 and elevating IL-17A levels
.
J Exp Clin Cancer Res
.
2019
;
38
(
1
):
73
.
125.
Mangolini
M
,
Ringshausen
I
.
Bone marrow stromal cells drive key hallmarks of B cell malignancies
.
Int J Mol Sci
.
2020
;
21
(
4
):
1466
.
You do not currently have access to this content.
Sign in via your Institution