• STK17B phosphorylates key regulators of iron homeostasis, thereby controlling an equilibrium between pro- and antiferroptotic proteins.

  • Pharmacological inhibition of STK17B activates ferroptosis, alleviates MM drug resistance, and suppresses tumor burden in MM mouse models.

Abstract

The progression of multiple myeloma (MM), an incurable malignancy of plasma cells, is often associated with the suppression of ferroptosis, a type of cell death driven by iron-dependent lipid peroxidation. The mechanisms underlying this suppression remain largely unknown. Here, we identified serine/threonine kinase 17b (STK17B) kinase as a critical suppressor of ferroptosis in MM. Elevated levels of STK17B are associated with poor overall survival in patients with MM, and STK17B expression is significantly higher in relapsed vs newly diagnosed MM cases. We found that inhibiting STK17B in MM cells increased the labile iron pool, enhanced lipid peroxidation, and sensitized cells to conventional anti-MM therapies. Notably, an orally available, in-house–generated STK17B inhibitor induced ferroptosis and significantly reduced tumor growth in MM xenograft mouse models. Mechanistically, proximity labeling assay combined with the phospho-proteomic analysis identified 2 major regulators of iron uptake and transport as direct targets of STK17B: iron-responsive element binding protein 2 (IREB2), and heat shock protein family B member 1 (HSPB1). We demonstrated that STK17B phosphorylates critical regulatory sites on IREB2 (S157) and HSPB1 (S15), thereby modulating the balance between IREB2 and HSPB1 downstream effectors, proferroptotic transferrin receptor, and antiferroptotic ferritin heavy chain proteins. Furthermore, we demonstrated that STK17B indirectly maintains activating phosphorylation of STAT3, a ferroptosis suppressor and a major driver of MM pathobiology. Our findings uncovered a clinically relevant and targetable STK17B-pIREB2S157/pHSPB1S15 signaling axis that suppresses ferroptosis and contributes to drug resistance in MM.

1.
Rajkumar
SV
.
Multiple myeloma: 2022 update on diagnosis, risk stratification, and management
.
Am J Hematol
.
2022
;
97
(
8
):
1086
-
1107
.
2.
Bhatt
P
,
Kloock
C
,
Comenzo
R
.
Relapsed/refractory multiple myeloma: a review of available therapies and clinical scenarios encountered in myeloma relapse
.
Curr Oncol
.
2023
;
30
(
2
):
2322
-
2347
.
3.
Gandolfi
S
,
Laubach
JP
,
Hideshima
T
,
Chauhan
D
,
Anderson
KC
,
Richardson
PG
.
The proteasome and proteasome inhibitors in multiple myeloma
.
Cancer Metastasis Rev
.
2017
;
36
(
4
):
561
-
584
.
4.
Rafae
A
,
van Rhee
F
,
Al Hadidi
S
.
Perspectives on the treatment of multiple myeloma
.
Oncologist
.
2024
;
29
(
3
):
200
-
212
.
5.
Robak
P
,
Drozdz
I
,
Szemraj
J
,
Robak
T
.
Drug resistance in multiple myeloma
.
Cancer Treat Rev
.
2018
;
70
:
199
-
208
.
6.
Yu
Y
,
Yan
Y
,
Niu
F
, et al
.
Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases
.
Cell Death Discov
.
2021
;
7
(
1
):
193
.
7.
Jiang
X
,
Stockwell
BR
,
Conrad
M
.
Ferroptosis: mechanisms, biology and role in disease
.
Nat Rev Mol Cell Biol
.
2021
;
22
(
4
):
266
-
282
.
8.
Tang
D
,
Chen
X
,
Kang
R
,
Kroemer
G
.
Ferroptosis: molecular mechanisms and health implications
.
Cell Res
.
2021
;
31
(
2
):
107
-
125
.
9.
Lei
G
,
Zhuang
L
,
Gan
B
.
Targeting ferroptosis as a vulnerability in cancer
.
Nat Rev Cancer
.
2022
;
22
(
7
):
381
-
396
.
10.
Kong
Y
,
Li
J
,
Lin
R
, et al
.
Understanding the unique mechanism of ferroptosis: a promising therapeutic target
.
Front Cell Dev Biol
.
2023
;
11
:
1329147
.
11.
VanderWall
K
,
Daniels-Wells
TR
,
Penichet
M
,
Lichtenstein
A
.
Iron in multiple myeloma
.
Crit Rev Oncog
.
2013
;
18
(
5
):
449
-
461
.
12.
Song
MK
,
Chung
JS
,
Seol
YM
,
Shin
HJ
,
Choi
YJ
,
Cho
GJ
.
Elevation of serum ferritin is associated with the outcome of patients with newly diagnosed multiple myeloma
.
Korean J Intern Med
.
2009
;
24
(
4
):
368
-
373
.
13.
Plano
F
,
Gigliotta
E
,
Corsale
AM
, et al
.
Ferritin metabolism reflects multiple myeloma microenvironment and predicts patient outcome
.
Int J Mol Sci
.
2023
;
24
(
10
):
8852
.
14.
Zheng
Y
,
Li
X
,
Kuang
L
,
Wang
Y
.
New insights into the characteristics of DRAK2 and its role in apoptosis: from molecular mechanisms to clinically applied potential
.
Front Pharmacol
.
2022
;
13
:
1014508
.
15.
Liu
X
,
Shi
X
,
Zhao
H
,
Wang
C
.
Exploring the molecular mechanisms of comorbidity of myocardial infarction and anxiety disorders by combining multiple data sets with in vivo experimental validation
.
Int Immunopharmacol
.
2025
;
146
:
113852
.
16.
Zhang
Y
,
Guo
Z
,
Lai
R
, et al
.
Comprehensive analysis based on genes associated with cuproptosis, ferroptosis, and pyroptosis for the prediction of diagnosis and therapies in coronary artery disease
.
Cardiovasc Ther
.
2025
;
2025
:
9106621
.
17.
Venkata
JK
,
An
N
,
Stuart
R
, et al
.
Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma
.
Blood
.
2014
;
124
(
12
):
1915
-
1925
.
18.
Lipchick
BC
,
Utley
A
,
Han
Z
, et al
.
The fatty acid elongase ELOVL6 regulates bortezomib resistance in multiple myeloma
.
Blood Adv
.
2021
;
5
(
7
):
1933
-
1946
.
19.
Han
Z
,
Yan
Z
,
Ma
Z
, et al
.
Targeting ABCD1-ACOX1-MET/IGF1R axis suppresses multiple myeloma
.
Leukemia
.
2025
;
39
(
3
):
720
-
733
.
20.
Wallander
ML
,
Zumbrennen
KB
,
Rodansky
ES
,
Romney
SJ
,
Leibold
EA
.
Iron-independent phosphorylation of iron regulatory protein 2 regulates ferritin during the cell cycle
.
J Biol Chem
.
2008
;
283
(
35
):
23589
-
23598
.
21.
Yang
WS
,
SriRamaratnam
R
,
Welsch
ME
, et al
.
Regulation of ferroptotic cancer cell death by GPX4
.
Cell
.
2014
;
156
(
1-2
):
317
-
331
.
22.
Barwick
BG
,
Neri
P
,
Bahlis
NJ
, et al
.
Multiple myeloma immunoglobulin lambda translocations portend poor prognosis
.
Nat Commun
.
2019
;
10
(
1
):
1911
.
23.
Nair
R
,
Vu
AH
,
Freer
AK
, et al
.
Heme promotes venetoclax resistance in multiple myeloma through MEK-ERK signaling and purine biosynthesis
.
Blood
.
2025
;
145
(
7
):
732
-
747
.
24.
Malamos
P
,
Papanikolaou
C
,
Gavriatopoulou
M
,
Dimopoulos
MA
,
Terpos
E
,
Souliotis
VL
.
The interplay between the DNA damage response (DDR) network and the mitogen-activated protein kinase (MAPK) signaling pathway in multiple myeloma
.
Int J Mol Sci
.
2024
;
25
(
13
):
6991
.
25.
Yin
J
,
Chen
J
,
Hong
JH
, et al
.
4EBP1-mediated SLC7A11 protein synthesis restrains ferroptosis triggered by MEK inhibitors in advanced ovarian cancer
.
JCI Insight
.
2024
;
9
(
14
):
e177857
.
26.
Zhang
L
,
Luo
B
,
Lu
Y
,
Chen
Y
.
Targeting death-associated protein kinases for treatment of human diseases: recent advances and future directions
.
J Med Chem
.
2023
;
66
(
2
):
1112
-
1136
.
27.
Mulligan
G
,
Mitsiades
C
,
Bryant
B
, et al
.
Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib
.
Blood
.
2007
;
109
(
8
):
3177
-
3188
.
28.
Wilander
BA
,
Harris
TL
,
Mandarano
AH
, et al
.
DRAK2 regulates myosin light chain phosphorylation in T cells
.
J Cell Sci
.
2024
;
137
(
22
):
jcs261813
.
29.
Dixon
SJ
,
Lemberg
KM
,
Lamprecht
MR
, et al
.
Ferroptosis: an iron-dependent form of nonapoptotic cell death
.
Cell
.
2012
;
149
(
5
):
1060
-
1072
.
30.
Wu
C
,
Zhao
W
,
Yu
J
,
Li
S
,
Lin
L
,
Chen
X
.
Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells
.
Sci Rep
.
2018
;
8
(
1
):
574
.
31.
Li
R
,
Zhang
J
,
Zhou
Y
, et al
.
Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells
.
Oxid Med Cell Longev
.
2020
;
2020
:
3469840
.
32.
Picado
A
,
Chaikuad
A
,
Wells
CI
, et al
.
A chemical probe for dark kinase STK17B derives its potency and high selectivity through a unique P-loop conformation
.
J Med Chem
.
2020
;
63
(
23
):
14626
-
14646
.
33.
Branon
TC
,
Bosch
JA
,
Sanchez
AD
, et al
.
Efficient proximity labeling in living cells and organisms with TurboID
.
Nat Biotechnol
.
2018
;
36
(
9
):
880
-
887
.
34.
Arrigo
AP
.
Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell
.
Cell Stress Chaperones
.
2017
;
22
(
4
):
517
-
529
.
35.
Sluzala
ZB
,
Hamati
A
,
Fort
PE
.
Key role of phosphorylation in small heat shock protein regulation via oligomeric disaggregation and functional activation
.
Cells
.
2025
;
14
(
2
):
127
.
36.
Wang
L
,
Wu
S
,
He
H
, et al
.
CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis
.
Lab Invest
.
2022
;
102
(
12
):
1323
-
1334
.
37.
Anderson
CP
,
Shen
M
,
Eisenstein
RS
,
Leibold
EA
.
Mammalian iron metabolism and its control by iron regulatory proteins
.
Biochim Biophys Acta
.
2012
;
1823
(
9
):
1468
-
1483
.
38.
Galy
B
,
Conrad
M
,
Muckenthaler
M
.
Mechanisms controlling cellular and systemic iron homeostasis
.
Nat Rev Mol Cell Biol
.
2024
;
25
(
2
):
133
-
155
.
39.
Song
H
,
Ethier
SP
,
Dziubinski
ML
,
Lin
J
.
Stat3 modulates heat shock 27kDa protein expression in breast epithelial cells
.
Biochem Biophys Res Commun
.
2004
;
314
(
1
):
143
-
150
.
40.
Jego
G
,
Hermetet
F
,
Girodon
F
,
Garrido
C
.
Chaperoning STAT3/5 by heat shock proteins: interest of their targeting in cancer therapy
.
Cancers (Basel)
.
2019
;
12
(
1
):
21
.
41.
Chong
PSY
,
Chng
WJ
,
de Mel
S
.
STAT3: a promising therapeutic target in multiple myeloma
.
Cancers (Basel)
.
2019
;
11
(
5
):
731
.
42.
Chen
H
,
Zheng
C
,
Zhang
Y
,
Chang
YZ
,
Qian
ZM
,
Shen
X
.
Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake
.
Int J Biochem Cell Biol
.
2006
;
38
(
8
):
1402
-
1416
.
43.
Gibert
B
,
Eckel
B
,
Fasquelle
L
, et al
.
Knock down of heat shock protein 27 (HspB1) induces degradation of several putative client proteins
.
PLoS One
.
2012
;
7
(
1
):
e29719
.
44.
Xie
J
,
Luo
D
,
Xing
P
,
Ding
W
.
The dual roles of STAT3 in ferroptosis: mechanism, regulation and therapeutic potential
.
J Inflamm Res
.
2025
;
18
:
4251
-
4266
.
45.
Csala
M
,
Kardon
T
,
Legeza
B
, et al
.
On the role of 4-hydroxynonenal in health and disease
.
Biochim Biophys Acta
.
2015
;
1852
(
5
):
826
-
838
.
46.
Chauhan
D
,
Li
G
,
Shringarpure
R
, et al
.
Blockade of Hsp27 overcomes bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells
.
Cancer Res
.
2003
;
63
(
19
):
6174
-
6177
.
47.
Ho
M
,
Goh
CY
,
Patel
A
, et al
.
Role of the bone marrow milieu in multiple myeloma progression and therapeutic resistance
.
Clin Lymphoma Myeloma Leuk
.
2020
;
20
(
10
):
e752
-
e768
.
48.
Eggold
JT
,
Rankin
EB
.
Erythropoiesis, EPO, macrophages, and bone
.
Bone
.
2019
;
119
:
36
-
41
.
49.
Zhang
C
.
Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control
.
Protein Cell
.
2014
;
5
(
10
):
750
-
760
.
50.
Li
P
,
Lyu
T
.
Research progress on ferroptosis in multiple myeloma
.
Curr Treat Options Oncol
.
2024
;
25
(
10
):
1276
-
1282
.
51.
Bose
M
,
Sanders
A
,
Handa
A
, et al
.
Molecular crosstalk between MUC1 and STAT3 influences the anti-proliferative effect of Napabucasin in epithelial cancers
.
Sci Rep
.
2024
;
14
(
1
):
3178
.
52.
Su
Q
,
Li
Q
,
Zhang
W
,
Li
B
,
Zhuang
W
.
Integrative analysis of enrichment and prognostic value of ferroptosis-related genes and pathways in multiple myeloma
.
Carcinogenesis
.
2022
;
43
(
11
):
1050
-
1058
.
53.
Gao
D
,
Liu
R
,
Lv
Y
, et al
.
A novel ferroptosis-related gene signature for predicting prognosis in multiple myeloma
.
Front Oncol
.
2023
;
13
:
999688
.
54.
Campanella
A
,
Santambrogio
P
,
Fontana
F
, et al
.
Iron increases the susceptibility of multiple myeloma cells to bortezomib
.
Haematologica
.
2013
;
98
(
6
):
971
-
979
.
55.
Bordini
J
,
Galvan
S
,
Ponzoni
M
, et al
.
Induction of iron excess restricts malignant plasma cells expansion and potentiates bortezomib effect in models of multiple myeloma
.
Leukemia
.
2017
;
31
(
4
):
967
-
970
.
56.
Mao
J
,
Luo
H
,
Wu
J
.
Drak2 overexpression results in increased beta-cell apoptosis after free fatty acid stimulation
.
J Cell Biochem
.
2008
;
105
(
4
):
1073
-
1080
.
57.
Wang
S
,
Xu
L
,
Lu
YT
, et al
.
Discovery of benzofuran-3(2H)-one derivatives as novel DRAK2 inhibitors that protect islet β-cells from apoptosis
.
Eur J Med Chem
.
2017
;
130
:
195
-
208
.
58.
Lu
Y
,
Xu
J
,
Li
Y
, et al
.
DRAK2 suppresses autophagy by phosphorylating ULK1 at Ser(56) to diminish pancreatic β cell function upon overnutrition
.
Sci Transl Med
.
2024
;
16
(
733
):
eade8647
.
59.
Wang
J
,
Wu
N
,
Peng
M
, et al
.
Ferritinophagy: research advance and clinical significance in cancers
.
Cell Death Discov
.
2023
;
9
(
1
):
463
.
60.
Sun
X
,
Ou
Z
,
Xie
M
, et al
.
HSPB1 as a novel regulator of ferroptotic cancer cell death
.
Oncogene
.
2015
;
34
(
45
):
5617
-
5625
.
61.
Li
X
,
Jiang
W
,
Dong
S
,
Li
W
,
Zhu
W
,
Zhou
W
.
STAT3 inhibitors: a novel insight for anticancer therapy of pancreatic cancer
.
Biomolecules
.
2022
;
12
(
10
):
1450
.
62.
Lipchick
BC
,
Fink
EE
,
Nikiforov
MA
.
Oxidative stress and proteasome inhibitors in multiple myeloma
.
Pharmacol Res
.
2016
;
105
:
210
-
215
.
63.
Fink
EE
,
Mannava
S
,
Bagati
A
, et al
.
Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells
.
Leukemia
.
2016
;
30
(
1
):
104
-
111
.
64.
Sebastian
S
,
Zhu
YX
,
Braggio
E
, et al
.
Multiple myeloma cells' capacity to decompose H(2)O(2) determines lenalidomide sensitivity
.
Blood
.
2017
;
129
(
8
):
991
-
1007
.
65.
Chaudhry
S
,
Castro
JR
,
Totiger
TM
, et al
.
Potent, selective, and orally bioavailable quinazoline-based STK17A/B dual inhibitors
.
ACS Med Chem Lett
.
2024
;
15
(
6
):
945
-
949
.
66.
Gao
LJ
,
Kovackova
S
,
Sála
M
,
Ramadori
AT
,
De Jonghe
S
,
Herdewijn
P
.
Discovery of dual death-associated protein related apoptosis inducing protein kinase 1 and 2 inhibitors by a scaffold hopping approach
.
J Med Chem
.
2014
;
57
(
18
):
7624
-
7643
.
67.
Scheuplein
F
,
Renner
F
,
Campbell
JE
, et al
.
Evaluation of STK17B as a cancer immunotherapy target utilizing highly potent and selective small molecule inhibitors
.
Front Immunol
.
2024
;
15
:
1411395
.
68.
Zhai
X
,
Lin
Y
,
Zhu
L
, et al
.
Ferroptosis in cancer immunity and immunotherapy: multifaceted interplay and clinical implications
.
Cytokine Growth Factor Rev
.
2024
;
75
:
101
-
109
.
69.
Jang
N
,
Kim
IK
,
Jung
D
,
Chung
Y
,
Kang
YP
.
Regulation of ferroptosis in cancer and immune cells
.
Immune Netw
.
2025
;
25
(
1
):
e6
.
You do not currently have access to this content.
Sign in via your Institution