• CRISPR activation screening during mesodermal differentiation from mouse embryonic stem cells identifies 7 genes with HSC induction potential.

  • A cocktail of 7 genes activated at the mesodermal stage induces mouse embryonic stem cell–derived multilineage repopulation and self-renewal.

Abstract

Hematopoietic stem cells (HSCs) possess the ability to long term reconstitute all the blood lineages and generate all blood cell types. As such, the in vitro generation of HSCs remains a central goal in regenerative medicine. Despite many efforts and recent advancements in the field, there is still no robust, reproducible, and efficient protocol for generating bona fide HSCs in vitro. This suggests that certain regulatory elements have yet to be uncovered. Here, we present a novel and unbiased approach to identifying endogenous components to specify HSCs from pluripotent stem cells. We performed a genomewide CRISPR activator screening during mesodermal differentiation from mouse embryonic stem cells. After in vitro differentiation, mesodermal KDR+ precursors were transplanted into primary and secondary immunodeficient NSG mice. This approach led to the identification of 7 genes (Spata2, Aass, Dctd, Eif4enif1, Guca1a, Eya2, and Net1) that, when activated during mesoderm specification, induce the generation of hematopoietic stem and progenitor cells. These cells are capable of serial engraftment and multilineage output (erythroid, myeloid, and T and B lymphoid) in vivo. Single-cell RNA sequencing further revealed that activating these 7 genes biases the embryoid bodies toward intraembryonic development, instead of extraembryonic, increasing the number of mesodermal progenitors that can generate HSCs. Our findings underscore the importance of differentiation during the first germ layer specification to generate definitive blood stem cells.

1.
Ema
H
,
Morita
Y
,
Suda
T
.
Heterogeneity and hierarchy of hematopoietic stem cells
.
Exp Hematol
.
2014
;
42
(
2
):
74
-
82.e2
.
2.
Zhang
Y
,
Gao
S
,
Xia
J
,
Liu
F
.
Hematopoietic hierarchy - an updated roadmap
.
Trends Cell Biol
.
2018
;
28
(
12
):
976
-
986
.
3.
Bigas
A
,
Galán Palma
L
,
Kartha
GM
,
Giorgetti
A
.
Using pluripotent stem cells to understand normal and leukemic hematopoietic development
.
Stem Cells Transl Med
.
2022
;
11
(
11
):
1123
-
1134
.
4.
Amabile
G
,
Welner
RS
,
Nombela-Arrieta
C
, et al
.
In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells
.
Blood
.
2013
;
121
(
8
):
1255
-
1264
.
5.
Suzuki
N
,
Yamazaki
S
,
Yamaguchi
T
, et al
.
Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation
.
Mol Ther
.
2013
;
21
(
7
):
1424
-
1431
.
6.
Sandler
VM
,
Lis
R
,
Liu
Y
, et al
.
Reprogramming human endothelial cells to haematopoietic cells requires vascular induction
.
Nature
.
2014
;
511
(
7509
):
312
-
318
.
7.
Riddell
J
,
Gazit
R
,
Garrison
BS
, et al
.
Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors
.
Cell
.
2014
;
157
(
3
):
549
-
564
.
8.
Lis
R
,
Karrasch
CC
,
Poulos
MG
, et al
.
Conversion of adult endothelium to immunocompetent haematopoietic stem cells
.
Nature
.
2017
;
545
(
7655
):
439
-
445
.
9.
Sugimura
R
,
Jha
DK
,
Han
A
, et al
.
Haematopoietic stem and progenitor cells from human pluripotent stem cells
.
Nature
.
2017
;
545
(
7655
):
432
-
438
.
10.
Palma
LG
,
Bigas
A
.
Making human hematopoietic stem cells without transgenes
.
Cell Reprogram
.
2024
;
26
(
2
):
43
-
45
.
11.
Piau
O
,
Brunet-Manquat
M
,
L'Homme
B
, et al
.
Generation of transgene-free hematopoietic stem cells from human induced pluripotent stem cells
.
Cell Stem Cell
.
2023
;
30
(
12
):
1610
-
1623.e1617
.
12.
Ng
ES
,
Sarila
G
,
Li
JY
, et al
.
Long-term engrafting multilineage hematopoietic cells differentiated from human induced pluripotent stem cells
.
Nat Biotechnol
.
2024
.
13.
Medvinsky
A
,
Dzierzak
E
.
Definitive hematopoiesis is autonomously initiated by the AGM region
.
Cell
.
1996
;
86
(
6
):
897
-
906
.
14.
de Bruijn
MFTR
,
Ma
X
,
Robin
C
,
Ottersbach
K
,
Sanchez
M-J
,
Dzierzak
E
.
Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta
.
Immunity
.
2002
;
16
(
5
):
673
-
683
.
15.
Dzierzak
E
,
Bigas
A
.
Blood development: hematopoietic stem cell dependence and independence
.
Cell Stem Cell
.
2018
;
22
(
5
):
639
-
651
.
16.
Kasbekar
M
,
Mitchell
CA
,
Proven
MA
,
Passegué
E
.
Hematopoietic stem cells through the ages: a lifetime of adaptation to organismal demands
.
Cell Stem Cell
.
2023
;
30
(
11
):
1403
-
1420
.
17.
Calvanese
V
,
Mikkola
HKA
.
The genesis of human hematopoietic stem cells
.
Blood
.
2023
;
142
(
6
):
519
-
532
.
18.
Chavez
A
,
Scheiman
J
,
Vora
S
, et al
.
Highly efficient Cas9-mediated transcriptional programming
.
Nat Methods
.
2015
;
12
(
4
):
326
-
328
.
19.
Pickar-Oliver
A
,
Gersbach
CA
.
The next generation of CRISPR-Cas technologies and applications
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
8
):
490
-
507
.
20.
Sroczynska
P
,
Lancrin
C
,
Pearson
S
,
Kouskoff
V
,
Lacaud
G
. In Vitro Differentiation of Embryonic Stem Cells as a Model of Early Hematopoietic Development. In:
So
Eric
,
Wai
Chi
, eds.
Leukemia. Methods in Molecular Biology
.
Humana Press
;
2009
.
21.
Horlbeck
MA
,
Gilbert
LA
,
Villalta
JE
, et al
.
Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation
.
Elife
.
2016
;
5
:
e19760
.
22.
Barrero
M
,
Lazarenkov
A
,
Blanco
E
, et al
.
The interferon gamma pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming
.
Sci Adv
.
2024
;
10
(
32
):
eadj8862
.
23.
Wang
B
,
Wang
M
,
Zhang
W
, et al
.
Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute
.
Nat Protoc
.
2019
;
14
(
3
):
756
-
780
.
24.
Thambyrajah
R
,
Maqueda
M
,
Neo
WH
, et al
.
Cis inhibition of NOTCH1 through JAGGED1 sustains embryonic hematopoietic stem cell fate
.
Nat Commun
.
2024
;
15
(
1
):
1604
.
25.
Zhu
Q
,
Gao
P
,
Tober
J
, et al
.
Developmental trajectory of prehematopoietic stem cell formation from endothelium
.
Blood
.
2020
;
136
(
7
):
845
-
856
.
26.
Pijuan-Sala
B
,
Griffiths
JA
,
Guibentif
C
, et al
.
A single-cell molecular map of mouse gastrulation and early organogenesis
.
Nature
.
2019
;
566
(
7745
):
490
-
495
.
27.
Tyser
RCV
,
Mahammadov
E
,
Nakanoh
S
,
Vallier
L
,
Scialdone
A
,
Srinivas
S
.
Single-cell transcriptomic characterization of a gastrulating human embryo
.
Nature
.
2021
;
600
(
7888
):
285
-
289
.
28.
Cui
L
,
Lin
S
,
Yang
X
, et al
.
Spatial transcriptomic characterization of a Carnegie stage 7 human embryo
.
Nat Cell Biol
.
2025
;
27
(
2
):
360
-
369
.
29.
Wang
R
,
Zhang
P
,
Wang
J
, et al
.
Construction of a cross-species cell landscape at single-cell level
.
Nucleic Acids Res
.
2023
;
51
(
2
):
501
-
516
.
30.
Rodriguez-Fraticelli
AE
,
Wolock
SL
,
Weinreb
CS
, et al
.
Clonal analysis of lineage fate in native haematopoiesis
.
Nature
.
2018
;
553
(
7687
):
212
-
216
.
31.
Kucinski
I
,
Campos
J
,
Barile
M
, et al
.
A time- and single-cell-resolved model of murine bone marrow hematopoiesis
.
Cell Stem Cell
.
2024
;
31
(
2
):
244
-
259.e10
.
32.
Kim
M
,
Lu
RJ
,
Benayoun
BA
.
Single-cell RNA-seq of primary bone marrow neutrophils from female and male adult mice
.
Sci Data
.
2022
;
9
(
1
):
442
.
33.
Lancrin
C
,
Sroczynska
P
,
Stephenson
C
,
Allen
T
,
Kouskoff
V
,
Lacaud
G
.
The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage
.
Nature
.
2009
;
457
(
7231
):
892
-
895
.
34.
Dann
E
,
Henderson
NC
,
Teichmann
SA
,
Morgan
MD
,
Marioni
JC
.
Differential abundance testing on single-cell data using k-nearest neighbor graphs
.
Nat Biotechnol
.
2022
;
40
(
2
):
245
-
253
.
35.
Murry
CE
,
Keller
G
.
Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development
.
Cell
.
2008
;
132
(
4
):
661
-
680
.
36.
McKinney-Freeman
S
,
Cahan
P
,
Li
H
, et al
.
The transcriptional landscape of hematopoietic stem cell ontogeny
.
Cell Stem Cell
.
2012
;
11
(
5
):
701
-
714
.
37.
Pearson
S
,
Cuvertino
S
,
Fleury
M
,
Lacaud
G
,
Kouskoff
V
.
In vivo repopulating activity emerges at the onset of hematopoietic specification during embryonic stem cell differentiation
.
Stem Cell Reports
.
2015
;
4
(
3
):
431
-
444
.
38.
Lugus
JJ
,
Park
C
,
Ma
YD
,
Choi
K
.
Both primitive and definitive blood cells are derived from Flk-1+ mesoderm
.
Blood
.
2009
;
113
(
3
):
563
-
566
.
39.
Rongvaux
A
,
Takizawa
H
,
Strowig
T
, et al
.
Human hemato-lymphoid system mice: current use and future potential for medicine
.
Annu Rev Immunol
.
2013
;
31
:
635
-
674
.
40.
Sippel
TR
,
Radtke
S
,
Olsen
TM
,
Kiem
H-P
,
Rongvaux
A
.
Human hematopoietic stem cell maintenance and myeloid cell development in next-generation humanized mouse models
.
Blood Adv
.
2019
;
3
(
3
):
268
-
274
.
41.
Sturgeon
CM
,
Ditadi
A
,
Awong
G
,
Kennedy
M
,
Keller
G
.
Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells
.
Nat Biotechnol
.
2014
;
32
(
6
):
554
-
561
.
42.
Fowler
JL
,
Zheng
SL
,
Nguyen
A
, et al
.
Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells
.
Dev Cell
.
2024
;
59
(
9
):
1110
-
1131.e22
.
43.
Elliott
PR
,
Leske
D
,
Hrdinka
M
, et al
.
SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling
.
Mol Cell
.
2016
;
63
(
6
):
990
-
1005
.
44.
Sacksteder
KA
,
Biery
BJ
,
Morrell
JC
, et al
.
Identification of the alpha-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia
.
Am J Hum Genet
.
2000
;
66
(
6
):
1736
-
1743
.
45.
Fugger
K
,
Bajrami
I
,
Silva Dos Santos
M
, et al
.
Targeting the nucleotide salvage factor DNPH1 sensitizes BRCA-deficient cells to PARP inhibitors
.
Science
.
2021
;
372
(
6538
):
156
-
165
.
46.
Vinberg
F
,
Turunen
TT
,
Heikkinen
H
,
Pitkänen
M
,
Koskelainen
A
.
A novel Ca2+-feedback mechanism extends the operating range of mammalian rods to brighter light
.
J Gen Physiol
.
2015
;
146
(
4
):
307
-
321
.
47.
Qin
H
,
Carr
HS
,
Wu
X
,
Muallem
D
,
Tran
NH
,
Frost
JA
.
Characterization of the biochemical and transforming properties of the neuroepithelial transforming protein 1
.
J Biol Chem
.
2005
;
280
(
9
):
7603
-
7613
.
48.
Räsch
F
,
Weber
R
,
Izaurralde
E
,
Igreja
C
.
4E-T-bound mRNAs are stored in a silenced and deadenylated form
.
Genes Dev
.
2020
;
34
(
11-12
):
847
-
860
.
49.
Di
Stefano B
,
Luo
E-C
,
Haggerty
C
, et al
.
The RNA helicase DDX6 controls cellular plasticity by modulating P-body homeostasis
.
Cell Stem Cell
.
2019
;
25
(
5
):
622
-
638.e613
.
50.
Kodali
S
,
Proietti
L
,
Valcarcel
G
, et al
.
RNA sequestration in P-bodies sustains myeloid leukaemia
.
Nat Cell Biol
.
2024
;
26
(
10
):
1745
-
1758
.
51.
Fougerousse
F
,
Durand
M
,
Lopez
S
, et al
.
Six and Eya expression during human somitogenesis and MyoD gene family activation
.
J Muscle Res Cell Motil
.
2002
;
23
(
3
):
255
-
264
.
52.
Patrick
AN
,
Cabrera
JH
,
Smith
AL
,
Chen
XS
,
Ford
HL
,
Zhao
R
.
Structure-function analyses of the human SIX1-EYA2 complex reveal insights into metastasis and BOR syndrome
.
Nat Struct Mol Biol
.
2013
;
20
(
4
):
447
-
453
.
53.
Forsberg
EC
,
Prohaska
SS
,
Katzman
S
,
Heffner
GC
,
Stuart
JM
,
Weissman
IL
.
Differential expression of novel potential regulators in hematopoietic stem cells
.
PLoS Genet
.
2005
;
1
(
3
):
e28
.
54.
Maharjan
BD
,
Ono
R
,
Nosaka
T
.
Eya2 is critical for the E2A-HLF-mediated immortalization of mouse hematopoietic stem/progenitor cells
.
Int J Oncol
.
2019
;
54
(
3
):
981
-
990
.
55.
Kyba
M
,
Perlingeiro
RCR
,
Daley
GQ
.
HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors
.
Cell
.
2002
;
109
(
1
):
29
-
37
.
56.
Yokomizo
T
,
Ideue
T
,
Morino-Koga
S
, et al
.
Independent origins of fetal liver haematopoietic stem and progenitor cells
.
Nature
.
2022
;
609
(
7928
):
779
-
784
.
You do not currently have access to this content.
Sign in via your Institution