• A barcoded in vivo CRISPR-Cas9 KO screen identifies Ncoa4 as a dependency in Tet2-mutant HSPCs.

  • In Tet2-mutant stem and progenitor cells, NCOA4 maintains iron availability for increased mitochondrial adenosine triphosphate production.

Abstract

TET2 is among the most commonly mutated genes in both clonal hematopoiesis and myeloid malignancies; thus, the ability to identify selective dependencies in TET2-deficient cells has broad translational significance. Here, we identify regulators of Tet2 knockout (KO) hematopoietic stem and progenitor cell (HSPC) expansion using an in vivo CRISPR-Cas9 KO screen, in which nucleotide barcoding enabled large-scale clonal tracing of Tet2-deficient HSPCs in a physiologic setting. Our screen identified candidate genes, including Ncoa4, that are selectively required for Tet2 KO clonal outgrowth compared with wild type. Ncoa4 targets ferritin for lysosomal degradation (ferritinophagy), maintaining intracellular iron homeostasis by releasing labile iron in response to cellular demands. In Tet2-deficient HSPCs, increased mitochondrial adenosine triphosphate production correlates with increased cellular iron requirements and, in turn, promotes Ncoa4-dependent ferritinophagy. Restricting iron availability reduces Tet2 KO stem cell numbers, revealing a dependency in TET2-mutated myeloid neoplasms.

1.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
2.
Fabre
MA
,
de Almeida
JG
,
Fiorillo
E
, et al
.
The longitudinal dynamics and natural history of clonal haematopoiesis
.
Nature
.
2022
;
606
(
7913
):
335
-
342
.
3.
Lee-Six
H
,
Øbro
NF
,
Shepherd
MS
, et al
.
Population dynamics of normal human blood inferred from somatic mutations
.
Nature
.
2018
;
561
(
7724
):
473
-
478
.
4.
Ito
S
,
D'Alessio
AC
,
Taranova
OV
,
Hong
K
,
Sowers
LC
,
Zhang
Y
.
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
.
Nature
.
2010
;
466
(
7310
):
1129
-
1133
.
5.
Moran-Crusio
K
,
Reavie
L
,
Shih
A
, et al
.
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
.
Cancer Cell
.
2011
;
20
(
1
):
11
-
24
.
6.
Delhommeau
F
,
Dupont
S
,
Valle
VD
, et al
.
Mutation in TET2 in myeloid cancers
.
N Engl J Med
.
2009
;
360
(
22
):
2289
-
2301
.
7.
Comazzetto
S
,
Shen
B
,
Morrison
SJ
.
Niches that regulate stem cells and hematopoiesis in adult bone marrow
.
Dev Cell
.
2021
;
56
(
13
):
1848
-
1860
.
8.
Ding
L
,
Morrison
SJ
.
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
.
Nature
.
2013
;
495
(
7440
):
231
-
235
.
9.
Decker
M
,
Leslie
J
,
Liu
Q
,
Ding
L
.
Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance
.
Science
.
2018
;
360
(
6384
):
106
-
110
.
10.
Mantel
CR
,
O'Leary
HA
,
Chitteti
BR
, et al
.
Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock
.
Cell
.
2015
;
161
(
7
):
1553
-
1565
.
11.
Ramdas
B
,
Mali
RS
,
Palam
LR
, et al
.
Driver mutations in leukemia promote disease pathogenesis through a combination of cell-autonomous and Niche modulation
.
Stem Cell Rep
.
2020
;
15
(
1
):
95
-
109
.
12.
Mistry
JJ
,
Young
KA
,
Colom Díaz
PA
,
Maestre
IF
,
Levine
RL
,
Trowbridge
JJ
.
Mesenchymal stromal cell senescence induced by Dnmt3a -mutant hematopoietic cells is a targetable mechanism driving clonal hematopoiesis and initiation of hematologic malignancy
.
bioRxiv
.
Preprint posted online 9 November 2023
.
13.
McClatchy
J
,
Strogantsev
R
,
Wolfe
E
, et al
.
Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells
.
Nat Commun
.
2023
;
14
(
1
):
8102
.
14.
Weinreb
C
,
Rodriguez-Fraticelli
A
,
Camargo
FD
,
Klein
AM
.
Lineage tracing on transcriptional landscapes links state to fate during differentiation
.
Science
.
2020
;
367
(
6479
):
eaaw3381
.
15.
Naik
SH
,
Perié
L
,
Swart
E
, et al
.
Diverse and heritable lineage imprinting of early haematopoietic progenitors
.
Nature
.
2013
;
496
(
7444
):
229
-
232
.
16.
Lu
R
,
Neff
NF
,
Quake
SR
,
Weissman
IL
.
Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding
.
Nat Biotechnol
.
2011
;
29
(
10
):
928
-
933
.
17.
Morita
Y
,
Ema
H
,
Nakauchi
H
.
Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment
.
J Exp Med
.
2010
;
207
(
6
):
1173
-
1182
.
18.
Busch
K
,
Klapproth
K
,
Barile
M
, et al
.
Fundamental properties of unperturbed haematopoiesis from stem cells in vivo
.
Nature
.
2015
;
518
(
7540
):
542
-
546
.
19.
Datlinger
P
,
Rendeiro
AF
,
Schmidl
C
, et al
.
Pooled CRISPR screening with single-cell transcriptome readout
.
Nat Methods
.
2017
;
14
(
3
):
297
-
301
.
20.
Griffin
GK
,
Wu
J
,
Iracheta-Vellve
A
, et al
.
Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity
.
Nature
.
2021
;
595
(
7866
):
309
-
314
.
21.
Kanamori
M
,
Konno
H
,
Osato
N
,
Kawai
J
,
Hayashizaki
Y
,
Suzuki
H
.
A genome-wide and nonredundant mouse transcription factor database
.
Biochem Biophys Res Commun
.
2004
;
322
(
3
):
787
-
793
.
22.
Meier
JA
,
Zhang
F
,
Sanjana
NE
.
GUIDES: sgRNA design for loss-of-function screens
.
Nat Methods
.
2017
;
14
(
9
):
831
-
832
.
23.
Wilkinson
AC
,
Ishida
R
,
Kikuchi
M
, et al
.
Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation
.
Nature
.
2019
;
571
(
7763
):
117
-
121
.
24.
Kühn
R
,
Schwenk
F
,
Aguet
M
,
Rajewsky
K
.
Inducible gene targeting in mice
.
Science
.
1995
;
269
(
5229
):
1427
-
1429
.
25.
Malcovati
L
,
Papaemmanuil
E
,
Ambaglio
I
, et al
.
Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia
.
Blood
.
2014
;
124
(
9
):
1513
-
1521
.
26.
Tara
S
,
Isshiki
Y
,
Nakajima-Takagi
Y
, et al
.
Bcor insufficiency promotes initiation and progression of myelodysplastic syndrome
.
Blood
.
2018
;
132
(
23
):
2470
-
2483
.
27.
Shrestha
R
,
Sakata-Yanagimoto
M
,
Maie
K
, et al
.
Molecular pathogenesis of progression to myeloid leukemia from TET-insufficient status
.
Blood Adv
.
2020
;
4
(
5
):
845
-
854
.
28.
Schmidt
CR
,
Achille
NJ
,
Kuntimaddi
A
, et al
.
BCOR binding to MLL-AF9 is essential for leukemia via altered EYA1, SIX, and MYC activity
.
Blood Cancer Discov
.
2020
;
1
(
2
):
162
-
177
.
29.
Vu
T
,
Straube
J
,
Porter
AH
, et al
.
Hematopoietic stem and progenitor cell-restricted Cdx2 expression induces transformation to myelodysplasia and acute leukemia
.
Nat Commun
.
2020
;
11
(
1
):
3021
.
30.
Bamezai
S
,
Pulikkottil
AJ
,
Yadav
T
, et al
.
A noncanonical enzymatic function of PIWIL4 maintains genomic integrity and leukemic growth in AML
.
Blood
.
2023
;
142
(
1
):
90
-
105
.
31.
Tarighat
SS
,
Santhanam
R
,
Frankhouser
D
, et al
.
The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation
.
Leukemia
.
2016
;
30
(
4
):
789
-
799
.
32.
Tsherniak
A
,
Vazquez
F
,
Montgomery
PG
, et al
.
Defining a cancer dependency map
.
Cell
.
2017
;
170
(
3
). 564.e16-576.e16.
33.
Li
W
,
Xu
H
,
Xiao
T
, et al
.
MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
.
Genome Biol
.
2014
;
15
(
12
):
554
.
34.
Zhao
M
,
Kim
P
,
Mitra
R
,
Zhao
J
,
Zhao
Z
.
TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes
.
Nucleic Acids Res
.
2016
;
44
(
D1
):
D1023
-
D1031
.
35.
Challen
GA
,
Pietras
EM
,
Wallscheid
NC
,
Signer
RAJ
.
Simplified murine multipotent progenitor isolation scheme: establishing a consensus approach for multipotent progenitor identification
.
Exp Hematol
.
2021
;
104
:
55
-
63
.
36.
Cao
J
,
Spielmann
M
,
Qiu
X
, et al
.
The single-cell transcriptional landscape of mammalian organogenesis
.
Nature
.
2019
;
566
(
7745
):
496
-
502
.
37.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
38.
Santana-Codina
N
,
Gableske
S
,
Quiles del Rey
M
, et al
.
NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms
.
Haematologica
.
2019
;
104
(
7
):
1342
-
1354
.
39.
Georgiades
P
,
Ogilvy
S
,
Duval
H
, et al
.
vavCre Transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages
.
Genesis
.
2002
;
34
(
4
):
251
-
256
.
40.
Qiu
X
,
Mao
Q
,
Tang
Y
, et al
.
Reversed graph embedding resolves complex single-cell trajectories
.
Nat Methods
.
2017
;
14
(
10
):
979
-
982
.
41.
Rodriguez-Fraticelli
AE
,
Weinreb
C
,
Wang
S-W
, et al
.
Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis
.
Nature
.
2020
;
583
(
7817
):
585
-
589
.
42.
Sommerkamp
P
,
Romero-Mulero
MC
,
Narr
A
, et al
.
Mouse multipotent progenitor 5 cells are located at the interphase between hematopoietic stem and progenitor cells
.
Blood
.
2021
;
137
(
23
):
3218
-
3224
.
43.
Lehnertz
B
,
Chagraoui
J
,
MacRae
T
, et al
.
HLF expression defines the human hematopoietic stem cell state
.
Blood
.
2021
;
138
(
25
):
2642
-
2654
.
44.
Akashi
K
,
Traver
D
,
Miyamoto
T
,
Weissman
IL
.
A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
.
Nature
.
2000
;
404
(
6774
):
193
-
197
.
45.
Dixon
SJ
,
Lemberg
KM
,
Lamprecht
Michael R
, et al
.
Ferroptosis: an iron-dependent form of nonapoptotic cell death
.
Cell
.
2012
;
149
(
5
):
1060
-
1072
.
46.
Mancias
JD
,
Wang
X
,
Gygi
SP
,
Harper
JW
,
Kimmelman
AC
.
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
.
Nature
.
2014
;
509
(
7498
):
105
-
109
.
47.
Dowdle
WE
,
Nyfeler
B
,
Nagel
J
, et al
.
Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
.
Nat Cell Biol
.
2014
;
16
(
11
):
1069
-
1079
.
48.
Wang
GG
,
Calvo
KR
,
Pasillas
MP
,
Sykes
DB
,
Häcker
H
,
Kamps
MP
.
Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8
.
Nat Methods
.
2006
;
3
(
4
):
287
-
293
.
49.
Santana-Codina
N
,
Del Rey
MQ
,
Kapner
KS
, et al
.
NCOA4-mediated ferritinophagy is a pancreatic cancer dependency via maintenance of iron bioavailability for iron-sulfur cluster proteins
.
Cancer Discov
.
2022
;
12
(
9
):
2180
-
2197
.
50.
Perez-Cunningham
J
,
Boyer
SW
,
Landon
M
,
Forsberg
EC
.
Hematopoietic stem cell-specific GFP-expressing transgenic mice generated by genetic excision of a pan-hematopoietic reporter gene
.
Exp Hematol
.
2016
;
44
(
8
). 755.e1-764.e1.
51.
Gan
T
,
Jude
CD
,
Zaffuto
K
,
Ernst
P
.
Developmentally induced Mll1 loss reveals defects in postnatal haematopoiesis
.
Leukemia
.
2010
;
24
(
10
):
1732
-
1741
.
52.
Mai
TT
,
Hamaï
A
,
Hienzsch
A
, et al
.
Salinomycin kills cancer stem cells by sequestering iron in lysosomes
.
Nat Chem
.
2017
;
9
(
10
):
1025
-
1033
.
53.
Garciaz
S
,
Guirguis
AA
,
Müller
S
, et al
.
Pharmacologic reduction of mitochondrial iron triggers a noncanonical BAX/BAK-dependent cell death
.
Cancer Discov
.
2022
;
12
(
3
):
774
-
791
.
54.
Mootha
VK
,
Lindgren
CM
,
Eriksson
K-F
, et al
.
PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
.
Nat Genet
.
2003
;
34
(
3
):
267
-
273
.
55.
Meng
F
,
Fleming
BA
,
Jia
X
,
Rousek
AA
,
Mulvey
MA
,
Ward
DM
.
Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases
.
Blood Adv
.
2022
;
6
(
6
):
1692
-
1707
.
56.
Nielsen
J
,
Gejl
KD
,
Hey-Mogensen
M
, et al
.
Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle
.
J Physiol
.
2017
;
595
(
9
):
2839
-
2847
.
57.
Triolo
M
,
Wade
S
,
Baker
N
,
Khacho
M
.
Evaluating mitochondrial length, volume, and cristae ultrastructure in rare mouse adult stem cell populations
.
STAR Protoc
.
2023
;
4
(
1
):
102107
.
58.
Hackenbrock
CR
.
Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria
.
J Cell Biol
.
1966
;
30
(
2
):
269
-
297
.
59.
Quintana-Cabrera
R
,
Mehrotra
A
,
Rigoni
G
,
Soriano
ME
.
Who and how in the regulation of mitochondrial cristae shape and function
.
Biochem Biophys Res Commun
.
2018
;
500
(
1
):
94
-
101
.
60.
Cogliati
S
,
Enriquez
JA
,
Scorrano
L
.
Mitochondrial cristae: where beauty meets functionality
.
Trends Biochem Sci
.
2016
;
41
(
3
):
261
-
273
.
61.
Chaudhry
A
,
Shi
R
,
Luciani
DS
.
A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells
.
Am J Physiol Endocrinol Metab
.
2020
;
318
(
2
):
E87
-
E101
.
62.
Hemel
IMGM
,
Engelen
BPH
,
Luber
N
,
Gerards
M
.
A hitchhiker’s guide to mitochondrial quantification
.
Mitochondrion
.
2021
;
59
:
216
-
224
.
63.
Ball
G
,
Demmerle
J
,
Kaufmann
R
,
Davis
I
,
Dobbie
IM
,
Schermelleh
L
.
SIMcheck: a toolbox for successful super-resolution structured illumination microscopy
.
Sci Rep
.
2015
;
5
(
1
):
15915
.
64.
Quiros
PM
,
Goyal
A
,
Jha
P
,
Auwerx
J
.
Analysis of mtDNA/nDNA ratio in mice
.
Curr Protoc Mouse Biol
.
2017
;
7
(
1
):
47
-
54
.
65.
Nakauchi
Y
,
Azizi
A
,
Thomas
D
, et al
.
The cell type–specific 5hmC landscape and dynamics of healthy human hematopoiesis and TET2-mutant preleukemia
.
Blood Cancer Discov
.
2022
;
3
(
4
):
346
-
367
.
66.
Challen
GA
,
Sun
D
,
Jeong
M
, et al
.
Dnmt3a is essential for hematopoietic stem cell differentiation
.
Nat Genet
.
2011
;
44
(
1
):
23
-
31
.
67.
Zhang
D
,
Gao
X
,
Li
H
, et al
.
The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow
.
Cell Stem Cell
.
2022
;
29
(
2
). 232.e7-247.e7.
68.
Waarts
MR
,
Mowla
S
,
Boileau
M
, et al
.
CRISPR dependency screens in primary hematopoietic stem cells identify KDM3B as a genotype specific vulnerability in IDH2- and TET2-mutant cells
.
Cancer Discov
.
2024
;
14
(
10
):
1860
-
1878
.
69.
Lara-Astiaso
D
,
Goñi-Salaverri
A
,
Mendieta-Esteban
J
, et al
.
In vivo screening characterizes chromatin factor functions during normal and malignant hematopoiesis
.
Nat Genet
.
2023
;
55
(
9
):
1542
-
1554
.
70.
Milling
LE
,
Markson
SC
,
Tjokrosurjo
Q
, et al
.
Framework for in vivo T cell screens
.
J Exp Med
.
2024
;
221
(
4
):
e20230699
.
71.
Kao
YR
,
Chen
J
,
Kumari
R
, et al
.
An iron rheostat controls hematopoietic stem cell fate
.
Cell Stem Cell
.
2024
;
31
(
3
). 378.e12-397.e12.
72.
Larrue
C
,
Mouche
S
,
Angelino
P
, et al
.
Targeting ferritinophagy impairs quiescent cancer stem cells in acute myeloid leukemia in vitro and in vivo models
.
Sci Transl Med
.
2024
;
16
(
757
):
eadk1731
.
73.
An
W
,
Feola
M
,
Levy
M
, et al
.
Iron chelation improves ineffective erythropoiesis and iron overload in myelodysplastic syndrome mice
.
Elife
.
2023
;
12
:
e83103
.
74.
Angelucci
E
,
Li
J
,
Greenberg
P
, et al
.
Iron chelation in transfusion-dependent patients with low- to intermediate-1–risk myelodysplastic syndromes: a randomized trial
.
Ann Intern Med
.
2020
;
172
(
8
):
513
-
522
.
75.
Hoelzgen
F
,
Nguyen
TTP
,
Klukin
E
, et al
.
Structural basis for the intracellular regulation of ferritin degradation
.
Nat Commun
.
2024
;
15
(
1
):
3802
.
76.
Yao
CH
,
Wang
R
,
Wang
Y
,
Kung
CP
,
Weber
JD
,
Patti
GJ
.
Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation
.
Elife
.
2019
;
8
:
e41351
.
77.
Jakobsen
NA
,
Turkalj
S
,
Zeng
AGX
, et al
.
Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging
.
Cell Stem Cell
.
2024
;
31
(
8
). 1127.e17-1144.e17.
You do not currently have access to this content.
Sign in via your Institution