• IKZF1 and NuRD induce rapid loss of chromatin accessibility and H3K27ac at enhancers and superenhancers to repress target genes.

  • Immediate IKZF1 target genes in pre-B cells significantly overlap with deregulated genes in IKZF1-mutated B-ALL.

Abstract

The transcription factor (TF) Ikaros zinc finger 1 (IKZF1) is essential for B-cell development, and recurrently mutated in human B-cell acute lymphoblastic leukemia (B-ALL). IKZF1 has been ascribed both activating and repressive functions via interactions with coactivator and corepressor complexes, but the relative abundance of IKZF1-associated coregulators and their contribution to IKZF1-mediated gene regulation are not well understood. To address this, we performed an unbiased identification of IKZF1-interacting proteins in pre-B cells and found that IKZF1 interacts overwhelmingly with corepressors and heterochromatin-associated proteins. Time-resolved analysis of transcription and chromatin state identified transcriptional repression as the immediate response to IKZF1 induction. Transcriptional repression preceded transcriptional activation by several hours, manifesting as a decrease in the fraction of transcriptional bursts at the single-molecule level. Repression was accompanied by a rapid loss of chromatin accessibility and reduced levels of histone H3 lysine 27 acetylation (H3K27ac), particularly at enhancers. We identified highly conserved helical motifs within the intrinsically disordered region of IKZF1 that mediate its association with the nucleosome remodeling and deacetylase (NuRD) corepressor complex through critical “KRK” residues that bind the NuRD subunit retinoblastoma binding protein 4 (RBBP4), a mechanism shared with the TFs FOG1, BCL11A, and SALL4. Functional characterization reveals that this region is necessary for the efficient silencing of target genes and antiproliferative functions of IKZF1 in B-ALL.

1.
Ong
CT
,
Corces
VG
.
Enhancer function: new insights into the regulation of tissue-specific gene expression
.
Nat Rev Genet
.
2011
;
12
(
4
):
283
-
293
.
2.
Georgopoulos
K
,
Bigby
M
,
Wang
JH
, et al
.
The Ikaros gene is required for the development of all lymphoid lineages
.
Cell
.
1994
;
79
(
1
):
143
-
156
.
3.
Lo
K
,
Landau
NR
,
Smale
ST
.
LyF-1, a transcriptional regulator that interacts with a novel class of promoters for lymphocyte-specific genes
.
Mol Cell Biol
.
1991
;
11
(
10
):
5229
-
5243
.
4.
Georgopoulos
K
,
Moore
DD
,
Derfler
B
.
Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment
.
Science
.
1992
;
258
(
5083
):
808
-
812
.
5.
Mullighan
CG
,
Miller
CB
,
Radtke
I
, et al
.
BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros
.
Nature
.
2008
;
453
(
7191
):
110
-
114
.
6.
Nakase
K
,
Ishimaru
F
,
Avitahl
N
, et al
.
Dominant negative isoform of the Ikaros gene in patients with adult B-cell acute lymphoblastic leukemia
.
Cancer Res
.
2000
;
60
(
15
):
4062
-
4065
.
7.
Martinelli
G
,
Iacobucci
I
,
Storlazzi
CT
, et al
.
IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report
.
J Clin Oncol
.
2009
;
27
(
31
):
5202
-
5207
.
8.
Mullighan
CG
,
Goorha
S
,
Radtke
I
, et al
.
Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia
.
Nature
.
2007
;
446
(
7137
):
758
-
764
.
9.
Ding
Y
,
Zhang
B
,
Payne
JL
, et al
.
Ikaros tumor suppressor function includes induction of active enhancers and super-enhancers along with pioneering activity
.
Leukemia
.
2019
;
33
(
11
):
2720
-
2731
.
10.
Lemarie
M
,
Bottardi
S
,
Mavoungou
L
,
Pak
H
,
Milot
E
.
IKAROS is required for the measured response of NOTCH target genes upon external NOTCH signaling
.
PLoS Genet
.
2021
;
17
(
3
):
e1009478
.
11.
Liang
Z
,
Brown
KE
,
Carroll
T
, et al
.
A high-resolution map of transcriptional repression
.
Elife
.
2017 Mar 20
;
6
:
e22767
.
12.
Hu
Y
,
Salgado Figueroa
D
,
Zhang
Z
, et al
.
Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS
.
Cell
.
2023
;
186
(
24
):
5269
-
5289.e22
.
13.
Fedl
AS
,
Tagoh
H
,
Gruenbacher
S
, et al
.
Transcriptional function of E2A, Ebf1, Pax5, Ikaros and Aiolos analyzed by in vivo acute protein degradation in early B cell development
.
Nat Immunol
.
2024
;
25
(
9
):
1663
-
1677
.
14.
Sun
W
,
Guo
J
,
McClellan
D
, et al
.
GFI1 cooperates with IKZF1/IKAROS to activate gene expression in T-cell acute lymphoblastic leukemia
.
Mol Cancer Res
.
2022
;
20
(
4
):
501
-
514
.
15.
Song
C
,
Pan
X
,
Ge
Z
, et al
.
Epigenetic regulation of gene expression by Ikaros, HDAC1 and casein kinase II in leukemia
.
Leukemia
.
2016
;
30
(
6
):
1436
-
1440
.
16.
Schjerven
H
,
Ayongaba
EF
,
Aghajanirefah
A
, et al
.
Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1(+) pre-B ALL
.
J Exp Med
.
2017
;
214
(
3
):
793
-
814
.
17.
Affar
M
,
Bottardi
S
,
Quansah
N
, et al
.
IKAROS: from chromatin organization to transcriptional elongation control
.
Cell Death Differ
.
2023
.
18.
Sridharan
R
,
Smale
ST
.
Predominant interaction of both Ikaros and Helios with the NuRD complex in immature thymocytes
.
J Biol Chem
.
2007
;
282
(
41
):
30227
-
30238
.
19.
Koipally
J
,
Renold
A
,
Kim
J
,
Georgopoulos
K
.
Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes
.
EMBO J
.
1999
;
18
(
11
):
3090
-
3100
.
20.
Koipally
J
,
Georgopoulos
K
.
Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity
.
J Biol Chem
.
2000
;
275
(
26
):
19594
-
19602
.
21.
Oravecz
A
,
Apostolov
A
,
Polak
K
, et al
.
Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2
.
Nat Commun
.
2015
;
6
:
8823
.
22.
O'Neill
DW
,
Schoetz
SS
,
Lopez
RA
, et al
.
An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells
.
Mol Cell Biol
.
2000
;
20
:
7572
-
7582
.
23.
Bossen
C
,
Murre
CS
,
Chang
AN
,
Mansson
R
,
Rodewald
HR
,
Murre
C
.
The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth
.
Nat Immunol
.
2015
;
16
(
7
):
775
-
784
.
24.
Kim
J
,
Sif
S
,
Jones
B
, et al
.
Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes
.
Immunity
.
1999
;
10
(
3
):
345
-
355
.
25.
Bottardi
S
,
Zmiri
FA
,
Bourgoin
V
,
Ross
J
,
Mavoungou
L
,
Milot
E
.
Ikaros interacts with P-TEFb and cooperates with GATA-1 to enhance transcription elongation
.
Nucleic Acids Res
.
2011
;
39
(
9
):
3505
-
3519
.
26.
Bottardi
S
,
Mavoungou
L
,
Pak
H
, et al
.
The IKAROS interaction with a complex including chromatin remodeling and transcription elongation activities is required for hematopoiesis
.
PLoS Genet
.
2014
;
10
(
12
):
e1004827
.
27.
Nesterova
TB
,
Wei
G
,
Coker
H
, et al
.
Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation
.
Nat Commun
.
2019
;
10
(
1
):
3129
.
28.
Buenrostro
JD
,
Wu
B
,
Chang
HY
,
Greenleaf
W J
.
ATAC-seq: a method for assaying chromatin accessibility genome-wide
.
Curr Protoc Mol Biol
.
2015
;
109
(
21
). 21.29.1–21.29.9.
29.
Zhang
T
,
Wei
G
,
Millard
CJ
, et al
.
A variant NuRD complex containing PWWP2A/B excludes MBD2/3 to regulate transcription at active genes
.
Nat Commun
.
2018
;
9
(
1
):
3798
.
30.
Fursova
NA
,
Blackledge
NP
,
Nakayama
M
, et al
.
Synergy between variant PRC1 complexes defines polycomb-mediated dene repression
.
Mol Cell
.
2019
;
74
(
5
):
1020
-
1036.e8
.
31.
Mohammed
H
,
Taylor
C
,
Brown
GD
,
Papachristou
EK
,
Carroll
JS
,
D'Santos
CS
.
Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes
.
Nat Protoc
.
2016
;
11
(
2
):
316
-
326
.
32.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
33.
Churchman
ML
,
Low
J
,
Qu
C
, et al
.
Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia
.
Cancer Cell
.
2015
;
28
(
3
):
343
-
356
.
34.
Ferreiros-Vidal
I
,
Carroll
T
,
Zhang
T
, et al
.
Feedforward regulation of Myc coordinates lineage-specific with housekeeping gene expression during B cell progenitor cell differentiation
.
PLoS Biol
.
2019
;
17
(
4
):
e2006506
.
35.
Kelley
CM
,
Ikeda
T
,
Koipally
J
, et al
.
Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors
.
Curr Biol
.
1998
;
8
(
9
):
508
-
515
.
36.
Gomez-del Arco
P
,
Maki
K
,
Georgopoulos
K
.
Phosphorylation controls Ikaros's ability to negatively regulate the G(1)-S transition
.
Mol Cell Biol
.
2004
;
24
(
7
):
2797
-
2807
.
37.
Popescu
M
,
Gurel
Z
,
Ronni
T
, et al
.
Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1
.
J Biol Chem
.
2009
;
284
(
20
):
13869
-
13880
.
38.
Gomez-del Arco
P
,
Koipally
J
,
Georgopoulos
K
.
Ikaros SUMOylation: switching out of repression
.
Mol Cell Biol
.
2005
;
25
(
7
):
2688
-
2697
.
39.
Holleran
AL
,
Lindenthal
B
,
Aldaghlas
TA
,
Kelleher
JK
.
Effect of tamoxifen on cholesterol synthesis in HepG2 cells and cultured rat hepatocytes
.
Metabolism
.
1998
;
47
(
12
):
1504
-
1513
.
40.
Hultsch
S
,
Kankainen
M
,
Paavolainen
L
, et al
.
Association of tamoxifen resistance and lipid reprogramming in breast cancer
.
BMC Cancer
.
2018
;
18
(
1
):
850
.
41.
Sabbattini
P
,
Lundgren
M
,
Georgiou
A
,
Chow
C
,
Warnes
G
,
Dillon
N
.
Binding of Ikaros to the lambda5 promoter silences transcription through a mechanism that does not require heterochromatin formation
.
EMBO J
.
2001
;
20
(
11
):
2812
-
2822
.
42.
Thompson
EC
,
Cobb
BS
,
Sabbattini
P
, et al
.
Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits
.
Immunity
.
2007
;
26
(
3
):
335
-
344
.
43.
Ferreiros-Vidal
I
,
Carroll
T
,
Taylor
B
, et al
.
Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation
.
Blood
.
2013
;
121
(
10
):
1769
-
1782
.
44.
Trinh
LA
,
Ferrini
R
,
Cobb
BS
, et al
.
Down-regulation of TDT transcription in CD4(+)CD8(+) thymocytes by Ikaros proteins in direct competition with an Ets activator
.
Genes Dev
.
2001
;
15
(
14
):
1817
-
1832
.
45.
Wittkopp
PJ
,
Kalay
G
.
Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence
.
Nat Rev Genet
.
2011
;
13
(
1
):
59
-
69
.
46.
Creyghton
MP
,
Cheng
AW
,
Welstead
GG
, et al
.
Histone H3K27ac separates active from poised enhancers and predicts developmental state
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
50
):
21931
-
21936
.
47.
Rada-Iglesias
A
,
Bajpai
R
,
Swigut
T
,
Brugmann
SA
,
Flynn
RA
,
Wysocka
J
.
A unique chromatin signature uncovers early developmental enhancers in humans
.
Nature
.
2011
;
470
(
7333
):
279
-
283
.
48.
Yan
F
,
Powell
DR
,
Curtis
DJ
,
Wong
NC
.
From reads to insight: a hitchhiker's guide to ATAC-seq data analysis
.
Genome Biol
.
2020
;
21
(
1
):
22
.
49.
Groner
AC
,
Meylan
S
,
Ciuffi
A
, et al
.
KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading
.
PLoS Genet
.
2010
;
6
(
3
):
e1000869
.
50.
Suter
DM
,
Molina
N
,
Gatfield
D
,
Schneider
K
,
Schibler
U
,
Naef
F
.
Mammalian genes are transcribed with widely different bursting kinetics
.
Science
.
2011
;
332
(
6028
):
472
-
474
.
51.
Dar
R D
,
Razooky
BS
,
Singh
A
, et al
.
Transcriptional burst frequency and burst size are equally modulated across the human genome
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
43
):
17454
-
17459
.
52.
Chen
LF
,
Lin
YT
,
Gallegos
DA
, et al
.
Enhancer histone acetylation modulates transcriptional bursting dynamics of neuronal activity-inducible genes
.
Cell Rep
.
2019
;
26
(
5
):
1174
-
1188.e5
.
53.
Robles-Rebollo
I
,
Cuartero
S
,
Canellas-Socias
A
, et al
.
Cohesin couples transcriptional bursting probabilities of inducible enhancers and promoters
.
Nat Commun
.
2022
;
13
(
1
):
4342
.
54.
Fisher
AG
,
Burdet
C
,
Bunce
C
,
Merkenschlager
M
,
Ceredig
R
.
Lymphoproliferative disorders in IL-7 transgenic mice: expansion of immature B cells which retain macrophage potential
.
Int Immunol
.
1995
;
7
(
3
):
415
-
423
.
55.
Piskacek
M
,
Havelka
M
,
Rezacova
M
,
Knight
A
.
The 9aaTAD transactivation domains: from Gal4 to p53
.
PLoS One
.
2016
;
11
(
9
):
e0162842
.
56.
Piskacek
S
,
Gregor
M
,
Nemethova
M
,
Grabner
M
,
Kovarik
P
,
Piskacek
M
.
Nine-amino-acid transactivation domain: establishment and prediction utilities
.
Genomics
.
2007
;
89
(
6
):
756
-
768
.
57.
Sun
L
,
Liu
A
,
Georgopoulos
K
.
Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development
.
EMBO J
.
1996
;
15
(
19
):
5358
-
5369
.
58.
Koipally
J
,
Heller
EJ
,
Seavitt
JR
,
Georgopoulos
K
.
Unconventional potentiation of gene expression by Ikaros
.
J Biol Chem
.
2002
;
277
(
15
):
13007
-
13015
.
59.
Ma
S
,
Pathak
S
,
Mandal
M
,
Trinh
L
,
Clark
MR
,
Lu
R
.
Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression
.
Mol Cell Biol
.
2010
;
30
(
17
):
4149
-
4158
.
60.
Dumortier
A
,
Jeannet
R
,
Kirstetter
P
, et al
.
Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice
.
Mol Cell Biol
.
2006
;
26
(
1
):
209
-
220
.
61.
Kathrein
KL
,
Lorenz
R
,
Innes
AM
,
Griffiths
E
,
Winandy
S
.
Ikaros induces quiescence and T-cell differentiation in a leukemia cell line
.
Mol Cell Biol
.
2005
;
25
(
5
):
1645
-
1654
.
62.
Lejon
S
,
Thong
SY
,
Murthy
A
, et al
.
Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48.FOG-1 complex
.
J Biol Chem
.
2011
;
286
(
2
):
1196
-
1203
.
63.
Moody
RR
,
Lo
MC
,
Meagher
JL
, et al
.
Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes
.
J Biol Chem
.
2018
;
293
(
6
):
2125
-
2136
.
64.
Liu
BH
,
Jobichen
C
,
Chia
CSB
, et al
.
Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
30
):
E7119
-
E7128
.
65.
Lauberth
SM
,
Rauchman
M
.
A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex
.
J Biol Chem
.
2006
;
281
(
33
):
23922
-
23931
.
66.
Kastner
P
,
Aukenova
A
,
Chan
S
.
Evolution of the Ikaros family transcription factors: from a deuterostome ancestor to humans
.
Biochem Biophys Res Commun
.
2024 Jan 29
;
694
:
149399
.
67.
Quenneville
S
,
Turelli
P
,
Bojkowska
K
, et al
.
The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development
.
Cell Rep
.
2012
;
2
(
4
):
766
-
773
.
68.
DelRosso
N
,
Tycko
J
,
Suzuki
P
, et al
.
Large-scale mapping and mutagenesis of human transcriptional effector domains
.
Nature
.
2023
;
616
(
7956
):
365
-
372
.
69.
Apostolov
A
,
Litim-Mecheri
I
,
Oravecz
A
, et al
.
Sumoylation inhibits the growth suppressive properties of Ikaros
.
PLoS One
.
2016
;
11
(
6
):
e0157767
.
70.
Richter-Pechanska
P
,
Kunz
JB
,
Hof
J
, et al
.
Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia
.
Blood Cancer J
.
2017
;
7
(
2
):
e523
.
71.
Churchman
ML
,
Qian
M
,
Te Kronnie
G
, et al
.
Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia
.
Cancer Cell
.
2018
;
33
(
5
):
937
-
948.e8
.
72.
Waterfall
JJ
,
Arons
E
,
Walker
RL
, et al
.
High prevalence of MAP2K1 mutations in variant and IGHV4-34-expressing hairy-cell leukemias
.
Nat Genet
.
2014
;
46
(
1
):
8
-
10
.
73.
Tiacci
E
,
Ladewig
E
,
Schiavoni
G
, et al
.
Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma
.
Blood
.
2018
;
131
(
22
):
2454
-
2465
.
74.
Mareschal
S
,
Dubois
S
,
Viailly
PJ
, et al
.
Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma
.
Genes Chromosomes Cancer
.
2016
;
55
(
3
):
251
-
267
.
75.
Menezes
J
,
Salgado
RN
,
Acquadro
F
, et al
.
ASXL1, TP53 and IKZF3 mutations are present in the chronic phase and blast crisis of chronic myeloid leukemia
.
Blood Cancer J
.
2013
;
3
(
11
):
e157
.
76.
Li
S
,
Zhang
N
,
Liu
S
, et al
.
ITGA5 is a novel oncogenic biomarker and correlates with tumor immune microenvironment in gliomas
.
Front Oncol
.
2022
;
12
:
844144
.
77.
Zhu
H
,
Wang
G
,
Zhu
H
,
Xu
A
.
ITGA5 is a prognostic biomarker and correlated with immune infiltration in gastrointestinal tumors
.
BMC Cancer
.
2021
;
21
(
1
):
269
.
78.
Cassinat
B
,
Verger
E
,
Maslah
N
, et al
.
CCND2 mutations are infrequent events in BCR-ABL1 negative myeloproliferative neoplasm patients
.
Haematologica
.
2021
;
106
(
3
):
863
-
864
.
79.
Li
Z
,
Xie
J
,
Fei
Y
, et al
.
GDNF family receptor alpha 2 promotes neuroblastoma cell proliferation by interacting with PTEN
.
Biochem Biophys Res Commun
.
2019
;
510
(
3
):
339
-
344
.
80.
Shi
H
,
Li
C
,
Feng
W
, et al
.
BCL11A is oncogenic and predicts poor outcomes in natural killer/T-cell lymphoma
.
Front Pharmacol
.
2020
;
11
:
820
.
You do not currently have access to this content.
Sign in via your Institution