• E cloacae promotes osteolysis by producing ammonium, which increases chemokine ligand 3 and accelerates osteoclastogenesis in MM.

  • Targeting E cloacae to reduce ammonium attenuates osteolysis in MM.

Abstract

Multiple myeloma (MM)-induced bone disease affects not only patients’ quality of life but also their overall survival. Our previous work demonstrated that the gut microbiome plays a crucial role in MM progression and drug resistance. However, the role of altered gut microbiota in MM bone disease remains unclear. In this study, we show that intestinal Enterobacter cloacae is significantly enriched in patients with MM with osteolysis. Through fecal microbial transplantation and single bacterial colonization experiments in a 5TGM1 MM mouse model, we found that intestinal colonization of E cloacae promotes osteolysis by increasing circulating ammonium levels. Elevated ammonium promotes osteoclastogenesis by increasing Trap protein levels in osteoclast precursors and by acetylating and stabilizing chemokine ligand 3 protein in MM cells. Inhibition of ammonium synthesis, using E cloacae with a deleted dcd gene, along with probiotic supplementation, alleviated osteolysis in MM. Overall, our work suggests that E cloacae promotes osteolysis in MM by synthesizing ammonium. This establishes a novel mechanism and potential intervention strategy for managing MM with osteolysis.

1.
Terpos
E
,
Ntanasis-Stathopoulos
I
,
Dimopoulos
MA
.
Myeloma bone disease: from biology findings to treatment approaches
.
Blood
.
2019
;
133
(
14
):
1534
-
1539
.
2.
Terpos
E
,
Zamagni
E
,
Lentzsch
S
, et al
.
Treatment of multiple myeloma-related bone disease: recommendations from the Bone Working Group of the International Myeloma Working Group
.
Lancet Oncol
.
2021
;
22
(
3
):
e119
-
e130
.
3.
Terpos
E
,
Ntanasis-Stathopoulos
I
,
Gavriatopoulou
M
,
Dimopoulos
MA
.
Pathogenesis of bone disease in multiple myeloma: from bench to bedside
.
Blood Cancer J
.
2018
;
8
(
1
):
7
.
4.
Terpos
E
,
Roodman
GD
,
Dimopoulos
MA
.
Optimal use of bisphosphonates in patients with multiple myeloma
.
Blood
.
2013
;
121
(
17
):
3325
-
3328
.
5.
Coleman
RE
,
Croucher
PI
,
Padhani
AR
, et al
.
Bone metastases
.
Nat Rev Dis Primers
.
2020
;
6
(
1
):
83
.
6.
Cowan
AJ
,
Green
DJ
,
Kwok
M
, et al
.
Diagnosis and Management of Multiple Myeloma: A Review
.
JAMA
.
2022
;
327
(
5
):
464
-
477
.
7.
Schwarzer
M
,
Makki
K
,
Storelli
G
, et al
.
Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition
.
Science
.
2016
;
351
(
6275
):
854
-
857
.
8.
Uchida
Y
,
Irie
K
,
Fukuhara
D
, et al
.
Commensal microbiota enhance both osteoclast and osteoblast activities
.
Molecules
.
2018
;
23
(
7
):
1517
.
9.
Yan
J
,
Herzog
JW
,
Tsang
K
, et al
.
Gut microbiota induce IGF-1 and promote bone formation and growth
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
47
):
E7554
-
E7563
.
10.
Cho
I
,
Yamanishi
S
,
Cox
L
, et al
.
Antibiotics in early life alter the murine colonic microbiome and adiposity
.
Nature
.
2012
;
488
(
7413
):
621
-
626
.
11.
Nobel
YR
,
Cox
LM
,
Kirigin
FF
, et al
.
Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment
.
Nat Commun
.
2015
;
6
:
7486
.
12.
Cox
LM
,
Yamanishi
S
,
Sohn
J
, et al
.
Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences
.
Cell
.
2014
;
158
(
4
):
705
-
721
.
13.
Lyu
Z
,
Hu
Y
,
Guo
Y
,
Liu
D
.
Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis
.
Bone Res
.
2023
;
11
(
1
):
31
.
14.
Guo
M
,
Liu
H
,
Yu
Y
, et al
.
Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg balance and gut microbiota structure
.
Gut Microb
.
2023
;
15
(
1
):
2190304
.
15.
Ding
M
,
Li
B
,
Chen
H
, et al
.
Human breastmilk-derived Bifidobacterium longum subsp. infantis CCFM1269 regulates bone formation by the GH/IGF axis through PI3K/AKT pathway
.
Gut Microb
.
2024
;
16
(
1
):
2290344
.
16.
Li
JY
,
Chassaing
B
,
Tyagi
AM
, et al
.
Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics
.
J Clin Invest
.
2016
;
126
(
6
):
2049
-
2063
.
17.
Chen
CY
,
Rao
SS
,
Yue
T
, et al
.
Glucocorticoid-induced loss of beneficial gut bacterial extracellular vesicles is associated with the pathogenesis of osteonecrosis
.
Sci Adv
.
2022
;
8
(
15
):
eabg8335
.
18.
Jian
X
,
Zhu
Y
,
Ouyang
J
, et al
.
Alterations of gut microbiome accelerate multiple myeloma progression by increasing the relative abundances of nitrogen-recycling bacteria
.
Microbiome
.
2020
;
8
(
1
):
74
.
19.
Wang
Y
,
Yang
Q
,
Zhu
Y
, et al
.
Intestinal Klebsiella pneumoniae contributes to pneumonia by synthesizing glutamine in multiple myeloma
.
Cancers
.
2022
;
14
(
17
):
4188
.
20.
Xia
J
,
Zhang
J
,
Wu
X
, et al
.
Blocking glycine utilization inhibits multiple myeloma progression by disrupting glutathione balance
.
Nat Commun
.
2022
;
13
(
1
):
4007
.
21.
Kuang
C
,
Xia
M
,
An
G
, et al
.
Excessive serine from the bone marrow microenvironment impairs megakaryopoiesis and thrombopoiesis in Multiple Myeloma
.
Nat Commun
.
2023
;
14
(
1
):
2093
.
22.
Zhang
J
,
Shi
F
,
Liu
X
, et al
.
Proline promotes proliferation and drug resistance of multiple myeloma by downregulation of proline dehydrogenase
.
Br J Haematol
.
2023
;
201
(
4
):
704
-
717
.
23.
Wu
X
,
Xia
J
,
Zhang
J
, et al
.
Phosphoglycerate dehydrogenase promotes proliferation and bortezomib resistance through increasing reduced glutathione synthesis in multiple myeloma
.
Br J Haematol
.
2020
;
190
(
1
):
52
-
66
.
24.
Zhu
Y
,
Jian
X
,
Chen
S
, et al
.
Targeting gut microbial nitrogen recycling and cellular uptake of ammonium to improve bortezomib resistance in multiple myeloma
.
Cell Metab
.
2024
;
36
(
1
):
159
-
175.e8
.
25.
Rakoff-Nahoum
S
,
Paglino
J
,
Eslami-Varzaneh
F
,
Edberg
S
,
Medzhitov
R
.
Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
.
Cell
.
2004
;
118
(
2
):
229
-
241
.
26.
Anders
S
,
Huber
W
.
Differential expression analysis for sequence count data
.
Genome Biol
.
2010
;
11
(
10
):
R106
.
27.
Greipp
PR
,
San Miguel
J
,
Durie
BG
, et al
.
International staging system for multiple myeloma
.
J Clin Oncol
.
2005
;
23
(
15
):
3412
-
3420
.
28.
Li
R
,
Zheng
M
,
Zheng
M
, et al
.
Metagenomic analysis reveals the linkages between bacteria and the functional enzymes responsible for potential ammonia and biogenic amine production in alfalfa silage
.
J Appl Microbiol
.
2022
;
132
(
4
):
2594
-
2604
.
29.
Tian
E
,
Zhan
F
,
Walker
R
, et al
.
The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma
.
N Engl J Med
.
2003
;
349
(
26
):
2483
-
2494
.
30.
Davin-Regli
A
,
Lavigne
JP
,
Pages
JM
.
Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance
.
Clin Microbiol Rev
.
2019
;
32
(
4
):
e00002-19
.
31.
Yang
Y
,
Hong
S
,
Xu
J
,
Li
C
,
Wang
S
,
Xun
Y
.
Enterobacter cloacae: a villain in CaOx stone disease?
.
Urolithiasis
.
2022
;
50
(
2
):
177
-
188
.
32.
Fei
N
,
Zhao
L
.
An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice
.
ISME J
.
2013
;
7
(
4
):
880
-
884
.
33.
Zaiss
MM
,
Jones
RM
,
Schett
G
,
Pacifici
R
.
The gut-bone axis: how bacterial metabolites bridge the distance
.
J Clin Invest
.
2019
;
129
(
8
):
3018
-
3028
.
34.
Gai
D
,
Chen
JR
,
Stewart
JP
, et al
.
CST6 suppresses osteolytic bone disease in multiple myeloma by blocking osteoclast differentiation
.
J Clin Invest
.
2022
;
132
(
18
):
e159527
.
35.
Lu
L
,
Chen
X
,
Liu
Y
,
Yu
X
.
Gut microbiota and bone metabolism
.
FASEB J
.
2021
;
35
(
7
):
e21740
.
You do not currently have access to this content.
Sign in via your Institution