Abstract

Macrophages execute core functions in maintaining tissue homeostasis, in which their extensive plasticity permits a spectrum of functions from tissue remodeling to immune defense. However, perturbations to tissue-resident macrophages during disease, and the subsequent emergence of monocyte-derived macrophages, can hinder tissue recovery and promote further damage through inflammatory and fibrotic programs. Gaining a fundamental understanding of the critical pathways defining pathogenic macrophage populations enables the development of targeted therapeutic approaches to improve disease outcomes. In the setting of chronic graft-versus-host disease (cGVHD), which remains the major complication of allogeneic hematopoietic stem cell transplantation, colony-stimulating factor 1 (CSF1)–dependent donor-derived macrophages have been identified as key pathogenic mediators of fibrotic skin and lung disease. Antibody blockade of the CSF1 receptor (CSF1R) to induce macrophage depletion showed remarkable capacity to prevent fibrosis in preclinical models and has subsequently demonstrated impressive efficacy for improving cGVHD in ongoing clinical trials. Similarly, macrophage depletion approaches are currently under investigation for their potential to augment responses to immune checkpoint inhibition. Moreover, both monocyte and tissue-resident macrophage populations have recently been implicated as mediators of the numerous toxicities associated with chimeric antigen receptor T-cell therapy, further highlighting potential avenues of macrophage-based interventions to improve clinical outcomes. Herein, we examine the current literature on basic macrophage biology and contextualize this in the setting of cellular and immunotherapy. Additionally, we highlight mechanisms by which macrophages can be targeted, largely by interfering with the CSF1/CSF1R signaling axis, for therapeutic benefit in the context of both cellular and immunotherapy.

1.
Park
MD
,
Silvin
A
,
Ginhoux
F
,
Merad
M
.
Macrophages in health and disease
.
Cell
.
2022
;
185
(
23
):
4259
-
4279
.
2.
Mass
E
,
Nimmerjahn
F
,
Kierdorf
K
,
Schlitzer
A
.
Tissue-specific macrophages: how they develop and choreograph tissue biology
.
Nat Rev Immunol
.
2023
;
23
(
9
):
563
-
579
.
3.
Zhao
J
,
Andreev
I
,
Silva
HM
.
Resident tissue macrophages: key coordinators of tissue homeostasis beyond immunity
.
Sci Immunol
.
2024
;
9
(
94
):
eadd1967
.
4.
Kitko
CL
,
Arora
M
,
DeFilipp
Z
, et al
.
Axatilimab for chronic graft-versus-host disease after failure of at least two prior systemic therapies: results of a phase I/II study
.
J Clin Oncol
.
2023
;
41
(
10
):
1864
-
1875
.
5.
Wolff
D
,
Cutler
C
,
Lee
SJ
, et al
.
Axatilimab in recurrent or refractory chronic graft-versus-host disease
.
N Engl J Med
.
2024
;
391
(
11
):
1002
-
1014
.
6.
Norelli
M
,
Camisa
B
,
Barbiera
G
, et al
.
Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T-cells
.
Nat Med
.
2018
;
24
(
6
):
739
-
748
.
7.
Vinnakota
JM
,
Biavasco
F
,
Schwabenland
M
, et al
.
Targeting TGFβ-activated kinase-1 activation in microglia reduces CAR T immune effector cell-associated neurotoxicity syndrome
.
Nat Cancer
.
2024
;
5
(
8
):
1227
-
1249
.
8.
Petty
AJ
,
Yang
Y
.
Tumor-associated macrophages in hematologic malignancies: new insights and targeted therapies
.
Cells
.
2019
;
8
(
12
):
1526
.
9.
DeNardo
DG
,
Ruffell
B
.
Macrophages as regulators of tumour immunity and immunotherapy
.
Nat Rev Immunol
.
2019
;
19
(
6
):
369
-
382
.
10.
Vinnakota
JM
,
Adams
RC
,
Athanassopoulos
D
, et al
.
Anti–PD-1 cancer immunotherapy induces central nervous system immune-related adverse events by microglia activation
.
Sci Transl Med
.
2024
;
16
(
751
):
eadj9672
.
11.
Hettinger
J
,
Richards
DM
,
Hansson
J
, et al
.
Origin of monocytes and macrophages in a committed progenitor
.
Nat Immunol
.
2013
;
14
(
8
):
821
-
830
.
12.
Cros
J
,
Cagnard
N
,
Woollard
K
, et al
.
Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
.
Immunity
.
2010
;
33
(
3
):
375
-
386
.
13.
Yona
S
,
Kim
K-W
,
Wolf
Y
, et al
.
Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
.
Immunity
.
2013
;
38
(
1
):
79
-
91
.
14.
Li
Y-H
,
Zhang
Y
,
Pan
G
,
Xiang
L-X
,
Luo
D-C
,
Shao
J-Z
.
Occurrences and functions of Ly6Chi and Ly6Clo macrophages in health and disease. Mini review
.
Front Immunol
.
2022
;
13
:
901672
.
15.
Miyake
K
,
Ito
J
,
Takahashi
K
, et al
.
Single-cell transcriptomics identifies the differentiation trajectory from inflammatory monocytes to pro-resolving macrophages in a mouse skin allergy model
.
Nat Commun
.
2024
;
15
(
1
):
1666
.
16.
Auffray
C
,
Fogg
D
,
Garfa
M
, et al
.
Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
.
Science
.
2007
;
317
(
5838
):
666
-
670
.
17.
MacDonald
KPA
,
Betts
BC
,
Couriel
D
.
Reprint of: emerging therapeutics for the control of chronic graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2018
;
24
(
3S
):
S7
-
S14
.
18.
Ramachandran
P
,
Pellicoro
A
,
Vernon
MA
, et al
.
Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
46
):
E3186
-
E3195
.
19.
Bain
CC
,
Bravo-Blas
A
,
Scott
CL
, et al
.
Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice
.
Nat Immunol
.
2014
;
15
(
10
):
929
-
937
.
20.
Tamoutounour
S
,
Guilliams
M
,
Montanana Sanchis
F
, et al
.
Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin
.
Immunity
.
2013
;
39
(
5
):
925
-
938
.
21.
Ginhoux
F
,
Jung
S
.
Monocytes and macrophages: developmental pathways and tissue homeostasis
.
Nat Rev Immunol
.
Jun 2014
;
14
(
6
):
392
-
404
.
22.
Sanin
DE
,
Ge
Y
,
Marinkovic
E
, et al
.
A common framework of monocyte-derived macrophage activation
.
Sci Immunol
.
2022
;
7
(
70
):
eabl7482
.
23.
Shaw
TN
,
Houston
SA
,
Wemyss
K
, et al
.
Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression
.
J Exp Med
.
2018
;
215
(
6
):
1507
-
1518
.
24.
Van Hove
H
,
Martens
L
,
Scheyltjens
I
, et al
.
A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment
.
Nat Neurosci
.
2019
;
22
(
6
):
1021
-
1035
.
25.
Mass
E
,
Ballesteros
I
,
Farlik
M
, et al
.
Specification of tissue-resident macrophages during organogenesis
.
Science
.
2016
;
353
(
6304
):
aaf4238
.
26.
Utz
SG
,
See
P
,
Mildenberger
W
, et al
.
Early fate defines microglia and non-parenchymal brain macrophage development
.
Cell
.
2020
;
181
(
3
):
557
-
573.e18
.
27.
Keren-Shaul
H
,
Spinrad
A
,
Weiner
A
, et al
.
A unique microglia type associated with restricting development of Alzheimer’s disease
.
Cell
.
2017
;
169
(
7
):
1276
-
1290.e17
.
28.
Prater
KE
,
Green
KJ
,
Mamde
S
, et al
.
Human microglia show unique transcriptional changes in Alzheimer’s disease
.
Nat Aging
.
2023
;
3
(
7
):
894
-
907
.
29.
Hume
DA
,
Irvine
KM
,
Pridans
C
.
The mononuclear phagocyte system: the relationship between monocytes and macrophages
.
Trends Immunol
.
2019
;
40
(
2
):
98
-
112
.
30.
Stanley
ER
,
Chitu
V
.
CSF-1 receptor signaling in myeloid cells
.
Cold Spring Harb Perspect Biol
.
2014
;
6
(
6
):
a021857
.
31.
Teh
YC
,
Chooi
MY
,
Chong
SZ
.
Behind the monocyte’s mystique: uncovering their developmental trajectories and fates
.
Discov Immunol
.
2023
;
2
(
1
):
kyad008
.
32.
Hume
DA
,
MacDonald
KPA
.
Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling
.
Blood
.
2012
;
119
(
8
):
1810
-
1820
.
33.
Alexander
KA
,
Flynn
R
,
Lineburg
KE
, et al
.
CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease
.
J Clin Invest
.
2014
;
124
(
10
):
4266
-
4280
.
34.
Praloran
V
,
Raventos-Suarez
C
,
Bartocci
A
,
Lucas
J
,
Stanley
ER
,
Gibbons
JJ
.
Alterations in the expression of colony-stimulating factor-1 and its receptor during an acute graft-vs-host reaction in mice
.
J Immunol
.
1990
;
145
(
10
):
3256
-
3261
.
35.
MacDonald
KPA
,
Palmer
JS
,
Cronau
S
, et al
.
An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation
.
Blood
.
2010
;
116
(
19
):
3955
-
3963
.
36.
Getts
DR
,
Shea
LD
,
Miller
SD
,
King
NJC
.
Harnessing nanoparticles for immune modulation
.
Trends Immunol
.
2015
;
36
(
7
):
419
-
427
.
37.
Kitko
CL
,
Arora
M
,
DeFilipp
Z
, et al
.
Axatilimab for chronic graft-versus-host disease after failure of at least two prior systemic therapies: results of a phase I/II study
.
J Clin Oncol
.
2023
;
41
(
10
):
1864
-
1875
.
38.
Galletti
G
,
Scielzo
C
,
Barbaglio
F
, et al
.
Targeting macrophages sensitizes chronic lymphocytic leukemia to apoptosis and inhibits disease progression
.
Cell Rep
.
2016
;
14
(
7
):
1748
-
1760
.
39.
Minnie
SA
,
Kuns
RD
,
Gartlan
KH
, et al
.
Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade
.
Blood
.
2018
;
132
(
16
):
1675
-
1688
.
40.
Wang
Q
,
Lu
Y
,
Li
R
, et al
.
Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma
.
Leukemia
.
2018
;
32
(
1
):
176
-
183
.
41.
Smith
CC
,
Levis
MJ
,
Frankfurt
O
, et al
.
A phase 1/2 study of the oral FLT3 inhibitor pexidartinib in relapsed/refractory FLT3-ITD-mutant acute myeloid leukemia
.
Blood Adv
.
2020
;
4
(
8
):
1711
-
1721
.
42.
Hittson
L
,
Glod
J
,
Amaya
M
,
Derdak
J
,
Widemann
BC
,
Kaplan
RN
.
Phase I study of pexidartinib (PLX3397) in children with refractory leukemias and solid tumors including neurofibromatosis type I (NF1) related plexiform neurofibromas (PN)
.
J Clin Oncol
.
2017
;
35
(
suppl 15
). 10546.
43.
von Tresckow
B
,
Morschhauser
F
,
Ribrag
V
, et al
.
An open-label, multicenter, phase I/II study of JNJ-40346527, a CSF-1R inhibitor, in patients with relapsed or refractory Hodgkin lymphoma
.
Clin Cancer Res
.
2015
;
21
(
8
):
1843
-
1850
.
44.
Edwards
DK
,
Watanabe-Smith
K
,
Rofelty
A
, et al
.
CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells
.
Blood
.
2019
;
133
(
6
):
588
-
599
.
45.
Papin
A
,
Tessoulin
B
,
Bellanger
C
, et al
.
CSF1R and BTK inhibitions as novel strategies to disrupt the dialog between mantle cell lymphoma and macrophages
.
Leukemia
.
2019
;
33
(
10
):
2442
-
2453
.
46.
Copelan
EA
.
Hematopoietic stem-cell transplantation
.
N Engl J Med
.
2006
;
354
(
17
):
1813
-
1826
.
47.
Hill
GR
,
Betts
BC
,
Tkachev
V
,
Kean
LS
,
Blazar
BR
.
Current concepts and advances in graft-versus-host disease immunology
.
Annu Rev Immunol
.
2021
;
39
:
19
-
49
.
48.
Hamilton
BK
.
Current approaches to prevent and treat GVHD after allogeneic stem cell transplantation
.
Hematology
.
2018
;
2018
(
1
):
228
-
235
.
49.
Koyama
M
,
Hill
GR
.
The primacy of gastrointestinal tract antigen-presenting cells in lethal graft-versus-host disease
.
Blood
.
2019
;
134
(
24
):
2139
-
2148
.
50.
Mariotti
J
,
Penack
O
,
Castagna
L
.
Acute graft-versus-host-disease other than typical targets: between myths and facts
.
Transplant Cell Ther
.
2021
;
27
(
2
):
115
-
124
.
51.
Zeiser
R
,
Teshima
T
.
Nonclassical manifestations of acute GVHD
.
Blood
.
2021
;
138
(
22
):
2165
-
2172
.
52.
Cooke
KR
,
Luznik
L
,
Sarantopoulos
S
, et al
.
The biology of chronic graft-versus-host disease: a task force report from the National Institutes of Health Consensus Development Project on criteria for clinical trials in chronic graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2017
;
23
(
2
):
211
-
234
.
53.
MacDonald
KP
,
Hill
GR
,
Blazar
BR
.
Chronic graft-versus-host disease: biological insights from preclinical and clinical studies
.
Blood
.
2017
;
129
(
1
):
13
-
21
.
54.
Grauer
O
,
Wolff
D
,
Bertz
H
, et al
.
Neurological manifestations of chronic graft-versus-host disease after allogeneic haematopoietic stem cell transplantation: report from the Consensus Conference on Clinical Practice in chronic graft-versus-host disease
.
Brain
.
2010
;
133
(
10
):
2852
-
2865
.
55.
Zeiser
R
,
Polverelli
N
,
Ram
R
, et al
.
Ruxolitinib for glucocorticoid-refractory chronic graft-versus-host disease
.
N Engl J Med
.
2021
;
385
(
3
):
228
-
238
.
56.
DeFilipp
Z
,
Alousi
AM
,
Pidala
JA
, et al
.
Nonrelapse mortality among patients diagnosed with chronic GVHD: an updated analysis from the Chronic GVHD Consortium
.
Blood Adv
.
2021
;
5
(
20
):
4278
-
4284
.
57.
Farhadfar
N
,
Hsu
JW
,
Logan
BR
, et al
.
Weighty choices: selecting optimal G-CSF doses for stem cell mobilization to optimize yield
.
Blood Adv
.
2020
;
4
(
4
):
706
-
716
.
58.
Cutler
C
,
Giri
S
,
Jeyapalan
S
,
Paniagua
D
,
Viswanathan
A
,
Antin
JH
.
Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis
.
J Clin Oncol
.
2001
;
19
(
16
):
3685
-
3691
.
59.
Flowers
MED
,
Parker
PM
,
Johnston
LJ
, et al
.
Comparison of chronic graft-versus-host disease after transplantation of peripheral blood stem cells versus bone marrow in allogeneic recipients: long-term follow-up of a randomized trial
.
Blood
.
2002
;
100
(
2
):
415
-
419
.
60.
Klämbt
V
,
Wohlfeil
SA
,
Schwab
L
, et al
.
A novel function for P2Y2 in myeloid recipient-derived cells during graft-versus-host disease
.
J Immunol
.
2015
;
195
(
12
):
5795
-
5804
.
61.
Reinhardt
K
,
Foell
D
,
Vogl
T
, et al
.
Monocyte-induced development of Th17 cells and the release of S100 proteins are involved in the pathogenesis of graft-versus-host disease
.
J Immunol
.
2014
;
193
(
7
):
3355
-
3365
.
62.
Arpinati
M
,
Chirumbolo
G
,
Saunthararajah
Y
, et al
.
Higher numbers of blood CD14+ cells before starting conditioning regimen correlate with greater risk of acute graft-versus-host disease in allogeneic stem cell transplantation from related donors
.
Biol Blood Marrow Transplant
.
2007
;
13
(
2
):
228
-
234
.
63.
Reinhardt-Heller
K
,
Hirschberg
I
,
Vogl
T
,
Handgretinger
R
,
Holzer
U
.
Characterization of monocyte subtypes regarding their phenotype and development in the context of graft-versus-host disease
.
Transpl Immunol
.
2018
;
50
:
48
-
54
.
64.
Li
X
,
Zhang
W
,
Wang
Y
, et al
.
Monocytes in allo-HSCT with aged donors secrete IL-1/IL-6/TNF to increase the risk of GVHD and damage the aged HSCs
.
iScience
.
2024
;
27
(
3
):
109126
.
65.
Wen
Q
,
Zhao
H-Y
,
Yao
W-L
, et al
.
Monocyte subsets in bone marrow grafts may contribute to a low incidence of acute graft-vs-host disease for young donors
.
J Cell Mol Med
.
2020
;
24
(
16
):
9204
-
9216
.
66.
D’Aveni
M
,
Rossignol
J
,
Coman
T
, et al
.
G-CSF mobilizes CD34+ regulatory monocytes that inhibit graft-versus-host disease
.
Sci Transl Med
.
2015
;
7
(
281
). 281ra42.
67.
Hashimoto
D
,
Chow
A
,
Greter
M
, et al
.
Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation
.
J Exp Med
.
2011
;
208
(
5
):
1069
-
1082
.
68.
Mathew
NR
,
Vinnakota
JM
,
Apostolova
P
, et al
.
Graft-versus-host disease of the CNS is mediated by TNF upregulation in microglia
.
J Clin Invest
.
2020
;
130
(
3
):
1315
-
1329
.
69.
Adams
RC
,
Carter-Cusack
D
,
Llanes
GT
, et al
.
CSF1R inhibition promotes neuroinflammation and behavioral deficits during graft-versus-host disease in mice
.
Blood
.
2024
;
143
(
10
):
912
-
929
.
70.
Tugues
S
,
Amorim
A
,
Spath
S
, et al
.
Graft-versus-host disease, but not graft-versus-leukemia immunity, is mediated by GM-CSF-licensed myeloid cells
.
Sci Transl Med
.
2018
;
10
(
469
):
eaat8410
.
71.
Jardine
L
,
Cytlak
U
,
Gunawan
M
, et al
.
Donor monocyte-derived macrophages promote human acute graft-versus-host disease
.
J Clin Invest
.
2020
;
130
(
9
):
4574
-
4586
.
72.
Aasebo
AT
,
Gedde-Dahl
T
,
Reims
HM
,
Baekkevold
ES
,
Jahnsen
FL
.
Calprotectin expressing donor-derived macrophages increase in acute gastrointestinal graft-versus-host disease
.
Transplant Cell Ther
.
2022
;
28
(
5
):
248.e1
-
248.e8
.
73.
Strobl
J
,
Gail
LM
,
Krecu
L
, et al
.
Diverse macrophage populations contribute to distinct manifestations of human cutaneous graft-versus-host disease
.
Br J Dermatol
.
2024
;
190
(
3
):
402
-
414
.
74.
Nishiwaki
S
,
Terakura
S
,
Ito
M
, et al
.
Impact of macrophage infiltration of skin lesions on survival after allogeneic stem cell transplantation: a clue to refractory graft-versus-host disease
.
Blood
.
2009
;
114
(
14
):
3113
-
3116
.
75.
Arpinati
M
,
Chirumbolo
G
,
Marzocchi
G
,
Baccarani
M
,
Rondelli
D
.
Increased donor CD86+CD14+ cells in the bone marrow and peripheral blood of patients with chronic graft-versus-host disease
.
Transplantation
.
2008
;
85
(
12
):
1826
-
1832
.
76.
Hirayama
M
,
Azuma
E
,
Iwamoto
S
, et al
.
High frequency of CD29high intermediate monocytes correlates with the activity of chronic graft-versus-host disease
.
Eur J Haematol
.
2013
;
91
(
3
):
280
-
282
.
77.
Reinhardt-Heller
K
,
Hirschberg
I
,
Lang
P
, et al
.
Increase of intermediate monocytes in graft-versus-host disease: correlation with MDR1(+)Th17.1 levels and the effect of prednisolone and 1α,25-dihydroxyvitamin D3
.
Biol Blood Marrow Transplant
.
2017
;
23
(
12
):
2057
-
2064
.
78.
Konuma
T
,
Kohara
C
,
Watanabe
E
, et al
.
Circulating monocyte subsets in human chronic graft-versus-host disease
.
Bone Marrow Transplant
.
2018
;
53
(
12
):
1532
-
1540
.
79.
Hill
GR
,
Olver
SD
,
Kuns
RD
, et al
.
Stem cell mobilization with G-CSF induces type 17 differentiation and promotes scleroderma
.
Blood
.
2010
;
116
(
5
):
819
-
828
.
80.
Banovic
T
,
MacDonald
KPA
,
Morris
ES
, et al
.
TGF-β in allogeneic stem cell transplantation: friend or foe?
.
Blood
.
2005
;
106
(
6
):
2206
-
2214
.
81.
Adams
RC
,
Carter-Cusack
D
,
Shaikh
SN
, et al
.
Donor bone marrow–derived macrophage MHC II drives neuroinflammation and altered behavior during chronic GVHD in mice
.
Blood
.
2022
;
139
(
9
):
1389
-
1408
.
82.
Zouali
H
,
Lemasson
J
,
Calugareanu
A
, et al
.
RNA sequencing of chronic GVHD skin lesions defines shared and unique inflammatory pathways characterizing lichen planus and morphea
.
Blood Adv
.
2022
;
6
(
9
):
2805
-
2811
.
83.
Wolff
D
,
Cutler
C
,
Lee
SJ
, et al
.
Safety and efficacy of axatilimab at 3 different doses in patients with chronic graft-versus-host disease (AGAVE-201) [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
1
.
84.
Hines
MR
,
Knight
TE
,
McNerney
KO
, et al
.
Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome
.
Transplant Cell Ther
.
2023
;
29
(
7
):
438.e1
-
438.e16
.
85.
Li
Y
,
Ming
Y
,
Fu
R
, et al
.
The pathogenesis, diagnosis, prevention, and treatment of CAR-T-cell therapy-related adverse reactions
.
Front Pharmacol
.
2022
;
13
:
950923
.
86.
Morris
EC
,
Neelapu
SS
,
Giavridis
T
,
Sadelain
M
.
Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy
.
Nat Rev Immunol
.
2022
;
22
(
2
):
85
-
96
.
87.
Sterner
RC
,
Sterner
RM
.
CAR-T-cell therapy: current limitations and potential strategies
.
Blood Cancer J
.
2021
;
11
(
4
):
69
.
88.
June
CH
,
Sadelain
M
.
Chimeric antigen receptor therapy
.
N Engl J Med
.
2018
;
379
(
1
):
64
-
73
.
89.
Neelapu
SS
,
Tummala
S
,
Kebriaei
P
, et al
.
Chimeric antigen receptor T-cell therapy–assessment and management of toxicities
.
Nat Rev Clin Oncol
.
2018
;
15
(
1
):
47
-
62
.
90.
Jain
MD
,
Smith
M
,
Shah
NN
.
How I treat refractory CRS and ICANS after CAR T-cell therapy
.
Blood
.
2023
;
141
(
20
):
2430
-
2442
.
91.
Giavridis
T
,
van der Stegen
SJC
,
Eyquem
J
,
Hamieh
M
,
Piersigilli
A
,
Sadelain
M
.
CAR T-cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade
.
Nat Med
.
Jun 2018
;
24
(
6
):
731
-
738
.
92.
Nguyen
TTT
,
Kim
YT
,
Jeong
G
,
Jin
M
.
Immunopathology of and potential therapeutics for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome: a translational perspective
.
Exp Mol Med
.
2024
;
56
(
3
):
559
-
569
.
93.
Major
A
,
Collins
J
,
Craney
C
, et al
.
Management of hemophagocytic lymphohistiocytosis (HLH) associated with chimeric antigen receptor T-cell (CAR-T) therapy using anti-cytokine therapy: an illustrative case and review of the literature
.
Leuk Lymphoma
.
2021
;
62
(
7
):
1765
-
1769
.
94.
Hashmi
H
,
Bachmeier
C
,
Chavez
JC
, et al
.
Haemophagocytic lymphohistiocytosis has variable time to onset following CD19 chimeric antigen receptor T-cell therapy
.
Br J Haematol
.
2019
;
187
(
2
):
e35
-
e38
.
95.
Crayne
CB
,
Albeituni
S
,
Nichols
KE
,
Cron
RQ
.
The immunology of macrophage activation syndrome
.
Front Immunol
.
2019
;
10
:
119
.
96.
Rainone
M
,
Ngo
D
,
Baird
JH
, et al
.
Interferon-γ blockade in CAR T-cell therapy–associated macrophage activation syndrome/hemophagocytic lymphohistiocytosis
.
Blood Adv
.
2023
;
7
(
4
):
533
-
536
.
97.
Locke
FL
,
Neelapu
SS
,
Bartlett
NL
, et al
.
Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL) [abstract]
.
Blood
.
2017
;
130
(
suppl 1
):
1547
.
98.
Wang
X
,
Borquez-Ojeda
O
,
Stefanski
J
, et al
.
Depletion of high-content CD14+ cells from apheresis products is critical for successful transduction and expansion of CAR T cells during large-scale cGMP manufacturing
.
Mol Ther Methods Clin Dev
.
2021
;
22
:
377
-
387
.
99.
Noaks
E
,
Peticone
C
,
Kotsopoulou
E
,
Bracewell
DG
.
Enriching leukapheresis improves T cell activation and transduction efficiency during CAR T processing
.
Mol Ther Methods Clin Dev
.
2021
;
20
:
675
-
687
.
100.
Carniti
C
,
Caldarelli
NM
,
Agnelli
L
, et al
.
Monocytes in leukapheresis products affect the outcome of CD19–targeted CAR T-cell therapy in patients with lymphoma
.
Blood Adv
.
2024
;
8
(
8
):
1968
-
1980
.
101.
Bourbon
E
,
Sesques
P
,
Gossez
M
, et al
.
HLA-DR expression on monocytes and outcome of anti-CD19 CAR T-cell therapy for large B-cell lymphoma
.
Blood Adv
.
2023
;
7
(
5
):
744
-
755
.
102.
Jain
MD
,
Zhao
H
,
Wang
X
, et al
.
Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma
.
Blood
.
2021
;
137
(
19
):
2621
-
2633
.
103.
Mantovani
A
,
Allavena
P
,
Marchesi
F
,
Garlanda
C
.
Macrophages as tools and targets in cancer therapy
.
Nat Rev Drug Discov
.
2022
;
21
(
11
):
799
-
820
.
104.
Bowman
RL
,
Klemm
F
,
Akkari
L
, et al
.
Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies
.
Cell Rep
.
2016
;
17
(
9
):
2445
-
2459
.
105.
Al-Matary
YS
,
Botezatu
L
,
Opalka
B
, et al
.
Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a growth factor independence 1 dependent manner
.
Haematologica
.
2016
;
101
(
10
):
1216
-
1227
.
106.
Galletti
G
,
Scielzo
C
,
Barbaglio
F
, et al
.
Targeting macrophages sensitizes chronic lymphocytic leukemia to apoptosis and inhibits disease progression
.
Cell Rep
.
2016
;
14
(
7
):
1748
-
1760
.
107.
Steidl
C
,
Lee
T
,
Shah
SP
, et al
.
Tumor-associated macrophages and survival in classic Hodgkin's lymphoma
.
N Engl J Med
.
2010
;
362
(
10
):
875
-
885
.
108.
Kawajiri
A
,
Kitano
S
,
Maeshima
AM
, et al
.
Association of CD204+ macrophages with poor outcomes of malignant lymphomas not in remission treated by allogeneic HCT
.
Eur J Haematol
.
2019
;
103
(
6
):
578
-
587
.
109.
Komohara
Y
,
Niino
D
,
Saito
Y
, et al
.
Clinical significance of CD163+ tumor-associated macrophages in patients with adult T-cell leukemia/lymphoma
.
Cancer Sci
.
2013
;
104
(
7
):
945
-
951
.
110.
Moskowitz
CH
,
Younes
A
,
de Vos
S
, et al
.
CSF1R inhibition by PLX3397 in patients with relapsed or refractory Hodgkin lymphoma: results from a phase 2 single agent clinical trial [abstract]
.
Blood
.
2012
;
120
(
21
):
1638
.
111.
Peranzoni
E
,
Lemoine
J
,
Vimeux
L
, et al
.
Macrophages impede CD8 T-cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
17
):
E4041
-
E4050
.
112.
Zhu
Y
,
Knolhoff
BL
,
Meyer
MA
, et al
.
CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models
.
Cancer Res
.
2014
;
74
(
18
):
5057
-
5069
.
113.
Sarantopoulos
S
.
Targeting CSF1R in chronic GVHD–lessons in translation
.
N Engl J Med
.
2024
;
391
(
11
):
1053
-
1055
.
You do not currently have access to this content.
Sign in via your Institution