Abstract

Recent advancements in single-cell genomics have enriched our understanding of hematopoiesis, providing intricate details about hematopoietic stem cell biology, differentiation, and lineage commitment. Technological advancements have highlighted extensive heterogeneity of cell populations and continuity of differentiation routes. Nevertheless, intermediate “attractor” states signify structure in stem and progenitor populations that link state transition dynamics to fate potential. We discuss how innovative model systems quantify lineage bias and how stress accelerates differentiation, thereby reducing fate plasticity compared with native hematopoiesis. We conclude by offering our perspective on the current model of hematopoiesis and discuss how a more precise understanding can translate to strategies that extend healthy hematopoiesis and prevent disease.

1.
Ogawa
M
.
Differentiation and proliferation of hematopoietic stem cells
.
Blood
.
1993
;
81
(
11
):
2844
-
2853
.
2.
Fliedner
TM
,
Graessle
D
,
Paulsen
C
,
Reimers
K
.
Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure
.
Cancer Biother Radiopharm
.
2002
;
17
(
4
):
405
-
426
.
3.
Laurenti
E
,
Göttgens
B
.
From haematopoietic stem cells to complex differentiation landscapes
.
Nature
.
2018
;
553
(
7689
):
418
-
426
.
4.
Maximov
A
.
Der lymphozyt als gemeinsame Stammzelle der verschiedenen blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Saugetiere
.
Folia Haematol Int Mag Klin Morphol Blutforsch
.
1909
;
8
:
125
-
134
.
5.
Becker
AJ
,
McCulloch
EA
,
Till
JE
.
Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells
.
Nature
.
1963
;
197
(
4866
):
452
-
454
.
6.
Till
JE
,
McCulloch
EA
.
A direct measurement of the radiation sensitivity of normal mouse bone marrow cells
.
Radiat Res
.
2012
;
178
(
2
):
213
. AV7.
7.
Metcalf
D
.
Studies on colony formation in vitro by mouse bone marrow cells. II. Action of colony stimulating factor
.
J Cell Physiol
.
1970
;
76
(
1
):
89
-
99
.
8.
Nicola
NA
,
Vadas
M
.
Hemopoietic colony-stimulating factors
.
Immunol Today
.
1984
;
5
(
3
):
76
-
80
.
9.
Ichikawa
Y
,
Pluznik
DH
,
Sachs
L
.
In vitro control of the development of macrophage and granulocyte colonies
.
Proc Natl Acad Sci U S A
.
1966
;
56
(
2
):
488
-
495
.
10.
Spangrude
GJ
,
Heimfeld
S
,
Weissman
IL
.
Purification and characterization of mouse hematopoietic stem cells
.
Science
.
1988
;
241
(
4861
):
58
-
62
.
11.
Civin
CI
,
Loken
MR
.
Cell surface antigens on human marrow cells: dissection of hematopoietic development using monoclonal antibodies and multiparameter flow cytometry
.
Int J Cell Cloning
.
1987
;
5
(
4
):
267
-
288
.
12.
Baum
CM
,
Weissman
IL
,
Tsukamoto
AS
,
Buckle
AM
,
Peault
B
.
Isolation of a candidate human hematopoietic stem-cell population
.
Proc Natl Acad Sci U S A
.
1992
;
89
(
7
):
2804
-
2808
.
13.
Osawa
M
,
Hanada
K
,
Hamada
H
,
Nakauchi
H
.
Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell
.
Science
.
1996
;
273
(
5272
):
242
-
245
.
14.
Fleming
WH
,
Alpern
EJ
,
Uchida
N
,
Ikuta
K
,
Spangrude
GJ
,
Weissman
IL
.
Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells
.
J Cell Biol
.
1993
;
122
(
4
):
897
-
902
.
15.
Morrison
SJ
,
Weissman
IL
.
The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype
.
Immunity
.
1994
;
1
(
8
):
661
-
673
.
16.
Huang
S
,
Terstappen
LW
.
Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38- hematopoietic stem cells
.
Blood
.
1994
;
83
(
6
):
1515
-
1526
.
17.
Rosu-Myles
M
,
Gallacher
L
,
Murdoch
B
, et al
.
The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression
.
Proc Natl Acad Sci U S A
.
2000
;
97
(
26
):
14626
-
14631
.
18.
Kondo
M
,
Weissman
IL
,
Akashi
K
.
Identification of clonogenic common lymphoid progenitors in mouse bone marrow
.
Cell
.
1997
;
91
(
5
):
661
-
672
.
19.
Akashi
K
,
Traver
D
,
Miyamoto
T
,
Weissman
IL
.
A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
.
Nature
.
2000
;
404
(
6774
):
193
-
197
.
20.
Adolfsson
J
,
Månsson
R
,
Buza-Vidas
N
, et al
.
Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment
.
Cell
.
2005
;
121
(
2
):
295
-
306
.
21.
Doulatov
S
,
Notta
F
,
Eppert
K
,
Nguyen
LT
,
Ohashi
PS
,
Dick
JE
.
Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development
.
Nat Immunol
.
2010
;
11
(
7
):
585
-
593
.
22.
Chambers
SM
,
Boles
NC
,
Lin
K-YK
, et al
.
Hematopoietic fingerprints: an expression database of stem cells and their progeny
.
Cell Stem Cell
.
2007
;
1
(
5
):
578
-
591
.
23.
Novershtern
N
,
Subramanian
A
,
Lawton
LN
, et al
.
Densely interconnected transcriptional circuits control cell states in human hematopoiesis
.
Cell
.
2011
;
144
(
2
):
296
-
309
.
24.
Laurenti
E
,
Doulatov
S
,
Zandi
S
, et al
.
The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment
.
Nat Immunol
.
2013
;
14
(
7
):
756
-
763
.
25.
Lara-Astiaso
D
,
Weiner
A
,
Lorenzo-Vivas
E
, et al
.
Immunogenetics. Chromatin state dynamics during blood formation
.
Science
.
2014
;
345
(
6199
):
943
-
949
.
26.
van Galen
P
,
Viny
AD
,
Ram
O
, et al
.
A multiplexed system for quantitative comparisons of chromatin landscapes
.
Mol Cell
.
2016
;
61
(
1
):
170
-
180
.
27.
Adelman
ER
,
Huang
H-T
,
Roisman
A
, et al
.
Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia
.
Cancer Discov
.
2019
;
9
(
8
):
1080
-
1101
.
28.
Paul
F
,
Arkin
Y ’ara
,
Giladi
A
, et al
.
Transcriptional heterogeneity and lineage commitment in myeloid progenitors
.
Cell
.
2015
;
163
(
7
):
1663
-
1677
.
29.
Svensson
V
,
Vento-Tormo
R
,
Teichmann
SA
.
Exponential scaling of single-cell RNA-seq in the past decade
.
Nat Protoc
.
2018
;
13
(
4
):
599
-
604
.
30.
Acosta
J
,
Ssozi
D
,
van Galen
P
.
Single-cell RNA sequencing to disentangle the blood system
.
Arterioscler Thromb Vasc Biol
.
2021
;
41
(
3
):
1012
-
1018
.
31.
Baysoy
A
,
Bai
Z
,
Satija
R
,
Fan
R
.
The technological landscape and applications of single-cell multi-omics
.
Nat Rev Mol Cell Biol
.
2023
;
24
(
10
):
695
-
713
.
32.
Hu
M
,
Krause
D
,
Greaves
M
, et al
.
Multilineage gene expression precedes commitment in the hemopoietic system
.
Genes Dev
.
1997
;
11
(
6
):
774
-
785
.
33.
Picelli
S
,
Faridani
OR
,
Björklund
AK
,
Winberg
G
,
Sagasser
S
,
Sandberg
R
.
Full-length RNA-seq from single cells using Smart-seq2
.
Nat Protoc
.
2014
;
9
(
1
):
171
-
181
.
34.
Hagemann-Jensen
M
,
Ziegenhain
C
,
Chen
P
, et al
.
Single-cell RNA counting at allele and isoform resolution using Smart-seq3
.
Nat Biotechnol
.
2020
;
38
(
6
):
708
-
714
.
35.
Jaitin
DA
,
Kenigsberg
E
,
Keren-Shaul
H
, et al
.
Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
.
Science
.
2014
;
343
(
6172
):
776
-
779
.
36.
Gierahn
TM
,
Wadsworth
MH 2nd
,
Hughes
TK
, et al
.
Seq-well: portable, low-cost RNA sequencing of single cells at high throughput
.
Nat Methods
.
2017
;
14
(
4
):
395
-
398
.
37.
Hughes
TK
,
Wadsworth
MH
,
Gierahn
TM
, et al
.
Second-strand synthesis-based massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies
.
Immunity
.
2020
;
53
(
4
):
878
-
894.e7
.
38.
Macosko
EZ
,
Basu
A
,
Satija
R
, et al
.
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
.
Cell
.
2015
;
161
(
5
):
1202
-
1214
.
39.
Zheng
GXY
,
Terry
JM
,
Belgrader
P
, et al
.
Massively parallel digital transcriptional profiling of single cells
.
Nat Commun
.
2017
;
8
:
14049
.
40.
Cao
J
,
Packer
JS
,
Ramani
V
, et al
.
Comprehensive single-cell transcriptional profiling of a multicellular organism
.
Science
.
2017
;
357
(
6352
):
661
-
667
.
41.
Rosenberg
AB
,
Roco
CM
,
Muscat
RA
, et al
.
Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
.
Science
.
2018
;
360
(
6385
):
176
-
182
.
42.
Wilson
NK
,
Kent
DG
,
Buettner
F
, et al
.
Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
.
Cell Stem Cell
.
2015
;
16
(
6
):
712
-
724
.
43.
Drissen
R
,
Thongjuea
S
,
Theilgaard-Mönch
K
,
Nerlov
C
.
Identification of two distinct pathways of human myelopoiesis
.
Sci Immunol
.
2019
;
4
(
35
):
eaau7148
.
44.
Olsson
A
,
Venkatasubramanian
M
,
Chaudhri
VK
, et al
.
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice
.
Nature
.
2016
;
537
(
7622
):
698
-
702
.
45.
Ranzoni
AM
,
Tangherloni
A
,
Berest
I
, et al
.
Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis
.
Cell Stem Cell
.
2021
;
28
(
3
):
472
-
487.e7
.
46.
Corces
MR
,
Buenrostro
JD
,
Wu
B
, et al
.
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
.
Nat Genet
.
2016
;
48
(
10
):
1193
-
1203
.
47.
Zeller
P
,
Yeung
J
,
Viñas Gaza
H
, et al
.
Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis
.
Nat Genet
.
2023
;
55
(
2
):
333
-
345
.
48.
Hui
T
,
Cao
Q
,
Wegrzyn-Woltosz
J
, et al
.
High-resolution single-cell DNA methylation measurements reveal epigenetically distinct hematopoietic stem cell subpopulations
.
Stem Cell Rep
.
2018
;
11
(
2
):
578
-
592
.
49.
Gaiti
F
,
Chaligne
R
,
Gu
H
, et al
.
Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia
.
Nature
.
2019
;
569
(
7757
):
576
-
580
.
50.
Scherer
M
,
Singh
I
,
Braun
M
, et al
.
Somatic epimutations enable single-cell lineage tracing in native hematopoiesis across the murine and human lifespan
.
bioRxiv
.
Preprint posted online 01 April 2024
.
51.
Stoeckius
M
,
Hafemeister
C
,
Stephenson
W
, et al
.
Simultaneous epitope and transcriptome measurement in single cells
.
Nat Methods
.
2017
;
14
(
9
):
865
-
868
.
52.
Zhang
X
,
Song
B
,
Carlino
MJ
, et al
.
An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors
.
Nat Immunol
.
2024
;
25
(
4
):
703
-
715
.
53.
Peterson
VM
,
Zhang
KX
,
Kumar
N
, et al
.
Multiplexed quantification of proteins and transcripts in single cells
.
Nat Biotechnol
.
2017
;
35
(
10
):
936
-
939
.
54.
Cao
J
,
Cusanovich
DA
,
Ramani
V
, et al
.
Joint profiling of chromatin accessibility and gene expression in thousands of single cells
.
Science
.
2018
;
361
(
6409
):
1380
-
1385
.
55.
Liu
L
,
Liu
C
,
Quintero
A
, et al
.
Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
.
Nat Commun
.
2019
;
10
(
1
):
470
.
56.
Mimitou
EP
,
Lareau
CA
,
Chen
KY
, et al
.
Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells
.
Nat Biotechnol
.
2021
;
39
(
10
):
1246
-
1258
.
57.
Rodriguez-Meira
A
,
Buck
G
,
Clark
S-A
, et al
.
Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing
.
Mol Cell
.
2019
;
73
(
6
):
1292
-
1305.e8
.
58.
Nam
AS
,
Kim
K-T
,
Chaligne
R
, et al
.
Somatic mutations and cell identity linked by genotyping of transcriptomes
.
Nature
.
2019
;
571
(
7765
):
355
-
360
.
59.
Yuan
DJ
,
Zinno
J
,
Botella
T
, et al
.
Genotype-to-phenotype mapping of somatic clonal mosaicism via single-cell co-capture of DNA mutations and mRNA transcripts
.
bioRxiv
.
Preprint posted online 23 May 2024
.
60.
Ludwig
LS
,
Lareau
CA
,
Ulirsch
JC
, et al
.
Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics
.
Cell
.
2019
;
176
(
6
):
1325
-
1339.e22
.
61.
Tu
AA
,
Gierahn
TM
,
Monian
B
, et al
.
TCR sequencing paired with massively parallel 3’ RNA-seq reveals clonotypic T cell signatures
.
Nat Immunol
.
2019
;
20
(
12
):
1692
-
1699
.
62.
Ainciburu
M
,
Morgan
DM
,
DePasquale
EAK
,
Love
JC
,
Prósper
F
,
van Galen
P
.
WAT3R: recovery of T-cell receptor variable regions from 3’ single-cell RNA-sequencing
.
Bioinformatics
.
2022
;
38
(
14
):
3645
-
3647
.
63.
Angermueller
C
,
Clark
SJ
,
Lee
HJ
, et al
.
Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity
.
Nat Methods
.
2016
;
13
(
3
):
229
-
232
.
64.
Hu
Y
,
An
Q
,
Guo
Y
, et al
.
Simultaneous profiling of mRNA transcriptome and DNA methylome from a single cell
.
Methods Mol Biol
.
2019
;
1979
:
363
-
377
.
65.
Kester
L
,
van Oudenaarden
A
.
Single-cell transcriptomics meets lineage tracing
.
Cell Stem Cell
.
2018
;
23
(
2
):
166
-
179
.
66.
Griffin
GK
,
Booth
CAG
,
Togami
K
, et al
.
Ultraviolet radiation shapes dendritic cell leukaemia transformation in the skin
.
Nature
.
2023
;
618
(
7966
):
834
-
841
.
67.
DePasquale
EAK
,
Ssozi
D
,
Ainciburu
M
, et al
.
Single-cell multiomics reveals clonal T-cell expansions and exhaustion in blastic plasmacytoid dendritic cell neoplasm
.
Front Immunol
.
2022
;
13
:
809414
.
68.
Ganesan
S
,
Murray
RM
,
Sotelo
J
, et al
.
Single-cell genotype-phenotype mapping identifies therapeutic vulnerabilities in VEXAS syndrome
.
bioRxiv
.
Preprint published online 20 May 2024
.
69.
Moignard
V
,
Macaulay
IC
,
Swiers
G
, et al
.
Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis
.
Nat Cell Biol
.
2013
;
15
(
4
):
363
-
372
.
70.
Nestorowa
S
,
Hamey
FK
,
Pijuan Sala
B
, et al
.
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
.
Blood
.
2016
;
128
(
8
):
e20
-
e31
.
71.
Morcos
MNF
,
Li
C
,
Munz
CM
, et al
.
Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis
.
Nat Commun
.
2022
;
13
(
1
):
4504
.
72.
Karamitros
D
,
Stoilova
B
,
Aboukhalil
Z
, et al
.
Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells
.
Nat Immunol
.
2018
;
19
(
1
):
85
-
97
.
73.
Buenrostro
JD
,
Corces
MR
,
Lareau
CA
, et al
.
Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation
.
Cell
.
2018
;
173
(
6
):
1535
-
1548.e16
.
74.
Granja
JM
,
Klemm
S
,
McGinnis
LM
, et al
.
Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia
.
Nat Biotechnol
.
2019
;
37
(
12
):
1458
-
1465
.
75.
Knapp
D
,
Hammond
CA
,
Wang
F
, et al
.
A topological view of human CD34+ cell state trajectories from integrated single-cell output and proteomic data
.
Blood
.
2019
;
133
(
9
):
927
-
939
.
76.
Cabezas-Wallscheid
N
,
Buettner
F
,
Sommerkamp
P
, et al
.
Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy
.
Cell
.
2017
;
169
(
5
):
807
-
823.e19
.
77.
Villani
A-C
,
Satija
R
,
Reynolds
G
, et al
.
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
.
Science
.
2017
;
356
(
6335
):
eaah4573
.
78.
Weissman
IL
,
Anderson
DJ
,
Gage
F
.
Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations
.
Annu Rev Cell Dev Biol
.
2001
;
17
:
387
-
403
.
79.
Orkin
SH
,
Zon
LI
.
Hematopoiesis: an evolving paradigm for stem cell biology
.
Cell
.
2008
;
132
(
4
):
631
-
644
.
80.
Velten
L
,
Haas
SF
,
Raffel
S
, et al
.
Human haematopoietic stem cell lineage commitment is a continuous process
.
Nat Cell Biol
.
2017
;
19
(
4
):
271
-
281
.
81.
Pellin
D
,
Loperfido
M
,
Baricordi
C
, et al
.
A comprehensive single cell transcriptional landscape of human hematopoietic progenitors
.
Nat Commun
.
2019
;
10
(
1
):
2395
.
82.
Notta
F
,
Zandi
S
,
Takayama
N
, et al
.
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
.
Science
.
2016
;
351
(
6269
):
aab2116
.
83.
Giladi
A
,
Paul
F
,
Herzog
Y
, et al
.
Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis
.
Nat Cell Biol
.
2018
;
20
(
7
):
836
-
846
.
84.
Alexander
Liggett L
,
Sankaran
VG
.
Unraveling hematopoiesis through the lens of enomics
.
Cell
.
2020
;
182
(
6
):
1384
-
1400
.
85.
Zeng
AGX
,
Nagree
MS
,
Jakobsen
NA
, et al
.
Identification of a human hematopoietic stem cell subset that retains memory of inflammatory stress
.
bioRxiv
.
18 December 2023
.
86.
Jakobsen
NA
,
Turkalj
S
,
Zeng
AGX
, et al
.
Selective advantage of mutant stem cells in clonal hematopoiesis occurs by attenuating the deleterious effects of inflammation and aging
.
bioRxiv
.
Preprint posted online 14 September 2023
.
87.
Weng
C
,
Yu
F
,
Yang
D
, et al
.
Deciphering cell states and genealogies of human hematopoiesis
.
Nature
.
2024
;
64
:
1
-
3
.
88.
Busch
K
,
Klapproth
K
,
Barile
M
, et al
.
Fundamental properties of unperturbed haematopoiesis from stem cells in vivo
.
Nature
.
2015
;
518
(
7540
):
542
-
546
.
89.
Kucinski
I
,
Campos
J
,
Barile
M
, et al
.
A time- and single-cell-resolved model of murine bone marrow hematopoiesis
.
Cell Stem Cell
.
2024
;
31
(
2
):
244
-
259.e10
.
90.
Takahashi
M
,
Barile
M
,
Chapple
RH
, et al
.
Reconciling flux experiments for quantitative modeling of normal and malignant hematopoietic stem/progenitor dynamics
.
Stem Cell Rep
.
2021
;
16
(
4
):
741
-
753
.
91.
Smith
LG
,
Weissman
IL
,
Heimfeld
S
.
Clonal analysis of hematopoietic stem-cell differentiation in vivo
.
Proc Natl Acad Sci U S A
.
1991
;
88
(
7
):
2788
-
2792
.
92.
Yamamoto
R
,
Wilkinson
AC
,
Ooehara
J
, et al
.
Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment
.
Cell Stem Cell
.
2018
;
22
(
4
):
600
-
607.e4
.
93.
Rodriguez-Fraticelli
AE
,
Weinreb
C
,
Wang
S-W
, et al
.
Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis
.
Nature
.
2020
;
583
(
7817
):
585
-
589
.
94.
Perié
L
,
Duffy
KR
,
Kok
L
,
de Boer
RJ
,
Schumacher
TN
.
The branching point in erythro-myeloid differentiation
.
Cell
.
2015
;
163
(
7
):
1655
-
1662
.
95.
Naik
SH
,
Perié
L
,
Swart
E
, et al
.
Diverse and heritable lineage imprinting of early haematopoietic progenitors
.
Nature
.
2013
;
496
(
7444
):
229
-
232
.
96.
Weinreb
C
,
Rodriguez-Fraticelli
A
,
Camargo
FD
,
Klein
AM
.
Lineage tracing on transcriptional landscapes links state to fate during differentiation
.
Science
.
2020
;
367
(
6479
):
eaaw3381
.
97.
Lin
DS
,
Zhang
S
,
Schreuder
J
, et al
.
A multi-track landscape of haematopoiesis informed by cellular barcoding and agent-based modelling
.
bioRxiv
.
Preprint posted online 30 March 2024
.
98.
Pei
W
,
Feyerabend
TB
,
Rössler
J
, et al
.
Polylox barcoding reveals haematopoietic stem cell fates realized in vivo
.
Nature
.
2017
;
548
(
7668
):
456
-
460
.
99.
Sun
J
,
Ramos
A
,
Chapman
B
, et al
.
Clonal dynamics of native haematopoiesis
.
Nature
.
2014
;
514
(
7522
):
322
-
327
.
100.
Rodriguez-Fraticelli
AE
,
Wolock
SL
,
Weinreb
CS
, et al
.
Clonal analysis of lineage fate in native haematopoiesis
.
Nature
.
2018
;
553
(
7687
):
212
-
216
.
101.
Bowling
S
,
Sritharan
D
,
Osorio
FG
, et al
.
An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells
.
Cell
.
2020
;
181
(
7
):
1693
-
1694
.
102.
Li
L
,
Bowling
S
,
McGeary
SE
, et al
.
A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells
.
Cell
.
2023
;
186
(
23
):
5183
-
5199.e22
.
103.
Feng
J
,
Jang
G
,
Esteva
E
,
Adams
NM
,
Jin
H
,
Reizis
B
.
Clonal barcoding of endogenous adult hematopoietic stem cells reveals a spectrum of lineage contributions
.
Proc Natl Acad Sci U S A
.
2024
;
121
(
4
):
e2317929121
.
104.
Chapple
RH
,
Tseng
Y-J
,
Hu
T
, et al
.
Lineage tracing of murine adult hematopoietic stem cells reveals active contribution to steady-state hematopoiesis
.
Blood Adv
.
2018
;
2
(
11
):
1220
-
1228
.
105.
Aksöz
M
,
Gafencu
G-A
,
Stoilova
B
, et al
.
Identification and age-dependent increase of platelet biased human hematopoietic stem cells
.
bioRxiv
.
Preprint posted online 14 January 2022
.
106.
Sanjuan-Pla
A
,
Macaulay
IC
,
Jensen
CT
, et al
.
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
.
Nature
.
2013
;
502
(
7470
):
232
-
236
.
107.
Busch
K
,
Rodewald
H-R
.
Unperturbed vs. post-transplantation hematopoiesis: both in vivo but different
.
Curr Opin Hematol
.
2016
;
23
(
4
):
295
-
303
.
108.
Swann
JW
,
Olson
OC
,
Passegué
E
.
Made to order: emergency myelopoiesis and demand-adapted innate immune cell production
.
Nat Rev Immunol
.
Published online 11 March 2024
.
109.
Lu
R
,
Czechowicz
A
,
Seita
J
,
Jiang
D
,
Weissman
IL
.
Clonal-level lineage commitment pathways of hematopoietic stem cells in vivo
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
4
):
1447
-
1456
.
110.
Parekh
C
,
Crooks
GM
.
Critical differences in hematopoiesis and lymphoid development between humans and mice
.
J Clin Immunol
.
2013
;
33
(
4
):
711
-
715
.
111.
Hsu
J
,
Reilly
A
,
Hayes
BJ
, et al
.
Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes
.
Blood
.
2019
;
134
(
2
):
186
-
198
.
112.
Kotini
AG
,
Carcamo
S
,
Cruz-Rodriguez
N
, et al
.
Patient-derived iPSCs faithfully represent the genetic diversity and cellular architecture of human acute myeloid leukemia
.
Blood Cancer Discov
.
2023
;
4
(
4
):
318
-
335
.
113.
Mitchell
E
,
Spencer Chapman
M
,
Williams
N
, et al
.
Clonal dynamics of haematopoiesis across the human lifespan
.
Nature
.
2022
;
606
(
7913
):
343
-
350
.
114.
Lee-Six
H
,
Øbro
NF
,
Shepherd
MS
, et al
.
Population dynamics of normal human blood inferred from somatic mutations
.
Nature
.
2018
;
561
(
7724
):
473
-
478
.
115.
Gao
R
,
Bai
S
,
Henderson
YC
, et al
.
Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes
.
Nat Biotechnol
.
2021
;
39
(
5
):
599
-
608
.
116.
Lareau
CA
,
Ludwig
LS
,
Muus
C
, et al
.
Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling
.
Nat Biotechnol
.
2021
;
39
(
4
):
451
-
461
.
117.
Miller
TE
,
Lareau
CA
,
Verga
JA
, et al
.
Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations
.
Nat Biotechnol
.
2022
;
40
(
7
):
1030
-
1034
.
118.
Enver
T
,
Pera
M
,
Peterson
C
,
Andrews
PW
.
Stem cell states, fates, and the rules of attraction
.
Cell Stem Cell
.
2009
;
4
(
5
):
387
-
397
.
119.
Lähnemann
D
,
Köster
J
,
Szczurek
E
, et al
.
Eleven grand challenges in single-cell data science
.
Genome Biol
.
2020
;
21
(
1
):
31
.
120.
Büttner
M
,
Miao
Z
,
Wolf
FA
,
Teichmann
SA
,
Theis
FJ
.
A test metric for assessing single-cell RNA-seq batch correction
.
Nat Methods
.
2019
;
16
(
1
):
43
-
49
.
121.
Stuart
T
,
Satija
R
.
Integrative single-cell analysis
.
Nat Rev Genet
.
2019
;
20
(
5
):
257
-
272
.
122.
Stuart
T
,
Butler
A
,
Hoffman
P
, et al
.
Comprehensive integration of single-cell data
.
Cell
.
2019
;
177
(
7
):
1888
-
1902.e21
.
123.
Korsunsky
I
,
Millard
N
,
Fan
J
, et al
.
Fast, sensitive and accurate integration of single-cell data with Harmony
.
Nat Methods
.
2019
;
16
(
12
):
1289
-
1296
.
124.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
125.
DePasquale
EAK
,
Schnell
D
,
Dexheimer
P
, et al
.
cellHarmony: cell-level matching and holistic comparison of single-cell transcriptomes
.
Nucleic Acids Res
.
2019
;
47
(
21
):
e138
.
126.
Pasquini
G
,
Rojo Arias
JE
,
Schäfer
P
,
Busskamp
V
.
Automated methods for cell type annotation on scRNA-seq data
.
Comput Struct Biotechnol J
.
2021
;
19
:
961
-
969
.
127.
Busarello
E
,
Biancon
G
,
Lauria
F
, et al
.
Interpreting single-cell messages in normal and aberrant hematopoiesis with the cell marker accordion
.
bioRxiv
.
Preprint posted online 12 March 2024
.
128.
Regev
A
,
Teichmann
SA
,
Lander
ES
, et al
.
The human cell atlas
.
Elife
.
2017
;
6
:
e27041
.
129.
Elmentaite
R
,
Domínguez Conde
C
,
Yang
L
,
Teichmann
SA
.
Single-cell atlases: shared and tissue-specific cell types across human organs
.
Nat Rev Genet
.
2022
;
23
(
7
):
395
-
410
.
130.
Lasry
A
,
Nadorp
B
,
Fornerod
M
, et al
.
An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia
.
Nat Cancer
.
2023
;
4
(
1
):
27
-
42
.
131.
Zeng
AGX
,
Iacobucci
I
,
Shah
S
, et al
.
Precise single-cell transcriptomic mapping of normal and leukemic cell states reveals unconventional lineage priming in acute myeloid leukemia
.
bioRxiv
.
Preprint posted online 27 December 2023
.
132.
Triana
S
,
Vonficht
D
,
Jopp-Saile
L
, et al
.
Single-cell proteo-genomic reference maps of the hematopoietic system enable the purification and massive profiling of precisely defined cell states
.
Nat Immunol
.
2021
;
22
(
12
):
1577
-
1589
.
133.
Martin-Rufino
JD
,
Castano
N
,
Pang
M
, et al
.
Massively parallel base editing to map variant effects in human hematopoiesis
.
Cell
.
2023
;
186
(
11
):
2456
-
2474.e24
.
134.
Chan
MM
,
Smith
ZD
,
Grosswendt
S
, et al
.
Molecular recording of mammalian embryogenesis
.
Nature
.
2019
;
570
(
7759
):
77
-
82
.
135.
Yang
D
,
Jones
MG
,
Naranjo
S
, et al
.
Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution
.
Cell
.
2022
;
185
(
11
):
1905
-
1923.e25
.
136.
McKenna
A
,
Findlay
GM
,
Gagnon
JA
,
Horwitz
MS
,
Schier
AF
,
Shendure
J
.
Whole-organism lineage tracing by combinatorial and cumulative genome editing
.
Science
.
2016
;
353
(
6298
):
aaf7907
.
137.
Grover
A
,
Sanjuan-Pla
A
,
Thongjuea
S
, et al
.
Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells
.
Nat Commun
.
2016
;
7
(
1
):
11075
.
138.
Terekhova
M
,
Swain
A
,
Bohacova
P
, et al
.
Single-cell atlas of healthy human blood unveils age-related loss of NKG2C+GZMB-CD8+ memory T cells and accumulation of type 2 memory T cells
.
Immunity
.
2023
;
56
(
12
):
2836
-
2854.e9
.
139.
Kain
BN
,
Tran
BT
,
Luna
PN
, et al
.
Hematopoietic stem and progenitor cells confer cross-protective trained immunity in mouse models
.
iScience
.
2023
;
26
(
9
):
107596
.
140.
Cheong
J-G
,
Ravishankar
A
,
Sharma
S
, et al
.
Epigenetic memory of coronavirus infection in innate immune cells and their progenitors
.
Cell
.
2023
;
186
(
18
):
3882
-
3902.e24
.
141.
Karagiannis
TT
,
Dowrey
TW
,
Villacorta-Martin
C
, et al
.
Multi-modal profiling of peripheral blood cells across the human lifespan reveals distinct immune cell signatures of aging and longevity
.
EBioMedicine
.
2023
;
90
:
104514
.
142.
Nam
AS
,
Dusaj
N
,
Izzo
F
, et al
.
Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation
.
Nat Genet
.
2022
;
54
(
10
):
1514
-
1526
.
143.
Hosseini
M
,
Voisin
V
,
Chegini
A
, et al
.
Metformin reduces the clonal fitness of Dnmt3aR878H hematopoietic stem and progenitor cells by reversing their aberrant metabolic and epigenetic state
.
Res Sq
.
Published online 6 February 2024
.
144.
Velten
L
,
Story
BA
,
Hernández-Malmierca
P
, et al
.
Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics
.
Nat Commun
.
2021
;
12
(
1
):
1366
.
145.
Miles
LA
,
Bowman
RL
,
Merlinsky
TR
, et al
.
Single-cell mutation analysis of clonal evolution in myeloid malignancies
.
Nature
.
2020
;
587
(
7834
):
477
-
482
.
146.
Albertí-Servera
L
,
Demeyer
S
,
Govaerts
I
, et al
.
Single-cell DNA amplicon sequencing reveals clonal heterogeneity and evolution in T-cell acute lymphoblastic leukemia
.
Blood
.
2021
;
137
(
6
):
801
-
811
.
147.
Huang
X
,
Li
Y
,
Zhang
J
, et al
.
Single-cell systems pharmacology identifies development-driven drug response and combination therapy in B cell acute lymphoblastic leukemia
.
Cancer Cell
.
2024
;
42
(
4
):
552
-
567.e6
.
148.
van Galen
P
,
Hovestadt
V
,
Wadsworth
MH Ii
, et al
.
Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity
.
Cell
.
2019
;
176
(
6
):
1265
-
1281.e24
.
149.
Zeng
AGX
,
Bansal
S
,
Jin
L
, et al
.
A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia
.
Nat Med
.
2022
;
28
(
6
):
1212
-
1223
.
150.
Pei
S
,
Pollyea
DA
,
Gustafson
A
, et al
.
Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia
.
Cancer Discov
.
2020
;
10
(
4
):
536
-
551
.
151.
Bottomly
D
,
Long
N
,
Schultz
AR
, et al
.
Integrative analysis of drug response and clinical outcome in acute myeloid leukemia
.
Cancer Cell
.
2022
;
40
(
8
):
850
-
864.e9
.
You do not currently have access to this content.
Sign in via your Institution