• PI3Kγ functions as a critical enzyme in acute myeloid leukemia development but not in normal hematopoiesis.

  • Targeting PI3Kγ represents a promising therapy that could improve outcomes and reduce toxicity compared to the current standard of care.

Abstract

Acute myeloid leukemia (AML) is an aggressive hematological malignancy originating from transformed hematopoietic stem or progenitor cells. AML prognosis remains poor owing to resistance and relapse driven by leukemia stem cells (LSCs). Targeting molecules essential for LSC function is a promising therapeutic approach. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is often dysregulated in AML. We found that although PI3Kγ is highly enriched in LSCs and critical for self-renewal, it was dispensable for normal hematopoietic stem cells. Mechanistically, PI3Kγ-AKT signaling promotes nuclear factor erythroid 2-related factor 2 (NRF2) nuclear accumulation, which induces 6-phosphogluconate dehydrogenase (PGD) and the pentose phosphate pathway, thereby maintaining LSC stemness. Importantly, genetic or pharmacological inhibition of PI3Kγ impaired expansion and stemness of murine and human AML cells in vitro and in vivo. Together, our findings reveal a key role for PI3Kγ in selectively maintaining LSC function by regulating AKT-NRF2-PGD metabolic pathway. Targeting the PI3Kγ pathway may, therefore, eliminate LSCs without damaging normal hematopoiesis, providing a promising therapeutic strategy for AML.

1.
Dohner
H
,
Weisdorf
DJ
,
Bloomfield
CD
.
Acute myeloid leukemia
.
N Engl J Med
.
2015
;
373
(
12
):
1136
-
1152
.
2.
Ferrara
F
,
Schiffer
CA
.
Acute myeloid leukaemia in adults
.
Lancet
.
2013
;
381
(
9865
):
484
-
495
.
3.
Pollyea
DA
,
Jordan
CT
.
Therapeutic targeting of acute myeloid leukemia stem cells
.
Blood
.
2017
;
129
(
12
):
1627
-
1635
.
4.
Stelmach
P
,
Trumpp
A
.
Leukemic stem cells and therapy resistance in acute myeloid leukemia
.
Haematologica
.
2023
;
108
(
2
):
353
-
366
.
5.
Thomas
D
,
Majeti
R
.
Biology and relevance of human acute myeloid leukemia stem cells
.
Blood
.
2017
;
129
(
12
):
1577
-
1585
.
6.
Cantley
LC
.
The phosphoinositide 3-kinase pathway
.
Science
.
2002
;
296
(
5573
):
1655
-
1657
.
7.
Hoxhaj
G
,
Manning
BD
.
The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism
.
Nat Rev Cancer
.
2020
;
20
(
2
):
74
-
88
.
8.
Madsen
RR
.
PI3K in stemness regulation: from development to cancer
.
Biochem Soc Trans
.
2020
;
48
(
1
):
301
-
315
.
9.
Fruman
DA
,
Chiu
H
,
Hopkins
BD
,
Bagrodia
S
,
Cantley
LC
,
Abraham
RT
.
The PI3K pathway in human disease
.
Cell
.
2017
;
170
(
4
):
605
-
635
.
10.
Park
S
,
Chapuis
N
,
Tamburini
J
, et al
.
Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia
.
Haematologica
.
2010
;
95
(
5
):
819
-
828
.
11.
Thorpe
LM
,
Yuzugullu
H
,
Zhao
JJ
.
PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting
.
Nat Rev Cancer
.
2015
;
15
(
1
):
7
-
24
.
12.
Xu
Q
,
Simpson
SE
,
Scialla
TJ
,
Bagg
A
,
Carroll
M
.
Survival of acute myeloid leukemia cells requires PI3 kinase activation
.
Blood
.
2003
;
102
(
3
):
972
-
980
.
13.
Okkenhaug
K
,
Vanhaesebroeck
B
.
PI3K in lymphocyte development, differentiation and activation
.
Nat Rev Immunol
.
2003
;
3
(
4
):
317
-
330
.
14.
Gritsman
K
,
Yuzugullu
H
,
Von
T
, et al
.
Hematopoiesis and RAS-driven myeloid leukemia differentially require PI3K isoform p110alpha
.
J Clin Invest
.
2014
;
124
(
4
):
1794
-
1809
.
15.
Yuzugullu
H
,
Baitsch
L
,
Von
T
, et al
.
A PI3K p110beta-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis
.
Nat Commun
.
2015
;
6
:
8501
.
16.
Sujobert
P
,
Bardet
V
,
Cornillet-Lefebvre
P
, et al
.
Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia
.
Blood
.
2005
;
106
(
3
):
1063
-
1066
.
17.
Subramaniam
PS
,
Whye
DW
,
Efimenko
E
, et al
.
Targeting nonclassical oncogenes for therapy in T-ALL
.
Cancer Cell
.
2012
;
21
(
4
):
459
-
472
.
18.
Hirsch
E
,
Katanaev
VL
,
Garlanda
C
, et al
.
Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation
.
Science
.
2000
;
287
(
5455
):
1049
-
1053
.
19.
Alcazar
I
,
Marques
M
,
Kumar
A
, et al
.
Phosphoinositide 3-kinase gamma participates in T cell receptor-induced T cell activation
.
J Exp Med
.
2007
;
204
(
12
):
2977
-
2987
.
20.
Rodriguez-Borlado
L
,
Barber
DF
,
Hernandez
C
, et al
.
Phosphatidylinositol 3-kinase regulates the CD4/CD8 T cell differentiation ratio
.
J Immunol
.
2003
;
170
(
9
):
4475
-
4482
.
21.
Sasaki
T
,
Irie-Sasaki
J
,
Jones
RG
, et al
.
Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration
.
Science
.
2000
;
287
(
5455
):
1040
-
1046
.
22.
Kaneda
MM
,
Messer
KS
,
Ralainirina
N
, et al
.
PI3Kgamma is a molecular switch that controls immune suppression
.
Nature
.
2016
;
539
(
7629
):
437
-
442
.
23.
De Henau
O
,
Rausch
M
,
Winkler
D
, et al
.
Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells
.
Nature
.
2016
;
539
(
7629
):
443
-
447
.
24.
Krivtsov
AV
,
Twomey
D
,
Feng
Z
, et al
.
Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9
.
Nature
.
2006
;
442
(
7104
):
818
-
822
.
25.
Yan
M
,
Kanbe
E
,
Peterson
LF
, et al
.
A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis
.
Nat Med
.
2006
;
12
(
8
):
945
-
949
.
26.
Somervaille
TC
,
Matheny
CJ
,
Spencer
GJ
, et al
.
Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells
.
Cell Stem Cell
.
2009
;
4
(
2
):
129
-
140
.
27.
Zuber
J
,
Shi
J
,
Wang
E
, et al
.
RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia
.
Nature
.
2011
;
478
(
7370
):
524
-
528
.
28.
Wang
J
,
Zhao
W
,
Guo
H
, et al
.
AKT isoform-specific expression and activation across cancer lineages
.
BMC Cancer
.
2018
;
18
(
1
):
742
.
29.
Du
L
,
Lee
JH
,
Jiang
H
, et al
.
Beta-Catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion
.
J Exp Med
.
2020
;
217
(
11
):
e20191115
.
30.
Perry
JM
,
Tao
F
,
Roy
A
, et al
.
Overcoming Wnt-beta-catenin dependent anticancer therapy resistance in leukaemia stem cells
.
Nat Cell Biol
.
2020
;
22
(
6
):
689
-
700
.
31.
Fan
J
,
Ye
J
,
Kamphorst
JJ
,
Shlomi
T
,
Thompson
CB
,
Rabinowitz
JD
.
Quantitative flux analysis reveals folate-dependent NADPH production
.
Nature
.
2014
;
510
(
7504
):
298
-
302
.
32.
Jiang
P
,
Du
W
,
Mancuso
A
,
Wellen
KE
,
Yang
X
.
Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence
.
Nature
.
2013
;
493
(
7434
):
689
-
693
.
33.
Bagger
FO
,
Rapin
N
,
Theilgaard-Monch
K
, et al
.
HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis
.
Nucleic Acids Res
.
2013
. (41(Database issue):D1034-1039).
34.
Tang
Z
,
Li
C
,
Kang
B
,
Gao
G
,
Li
C
,
Zhang
Z
.
GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses
.
Nucleic Acids Res
.
2017
;
45
(
W1
):
W98
-
W102
.
35.
Goardon
N
,
Marchi
E
,
Atzberger
A
, et al
.
Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia
.
Cancer Cell
.
2011
;
19
(
1
):
138
-
152
.
36.
Mitsuishi
Y
,
Taguchi
K
,
Kawatani
Y
, et al
.
Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
.
Cancer Cell
.
2012
;
22
(
1
):
66
-
79
.
37.
Ong
AJ
,
Saeidi
S
,
Chi
NHK
, et al
.
The positive feedback loop between Nrf2 and phosphogluconate dehydrogenase stimulates proliferation and clonogenicity of human hepatoma cells
.
Free Radic Res
.
2020
;
54
(
11-12
):
906
-
917
.
38.
Evans
CA
,
Liu
T
,
Lescarbeau
A
, et al
.
Discovery of a selective phosphoinositide-3-kinase (PI3K)-gamma inhibitor (IPI-549) as an immuno-oncology clinical candidate
.
ACS Med Chem Lett
.
2016
;
7
(
9
):
862
-
867
.
39.
Jain
A
,
Lamark
T
,
Sjøttem
E
, et al
.
p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
.
J Biol Chem
.
2010
;
285
(
29
):
22576
-
22591
.
40.
Komatsu
M
,
Kurokawa
H
,
Waguri
S
, et al
.
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
.
Nat Cell Biol
.
2010
;
12
(
3
):
213
-
223
.
41.
Nagy
P
,
Varga
A
,
Pircs
K
,
Hegedus
K
,
Juhasz
G
.
Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster
.
PLoS Genet
.
2013
;
9
(
8
):
e1003664
.
42.
Jia
S
,
Roberts
TM
,
Zhao
JJ
.
Should individual PI3 kinase isoforms be targeted in cancer?
.
Curr Opin Cell Biol
.
2009
;
21
(
2
):
199
-
208
.
43.
Bergholz
JS
,
Roberts
TM
,
Zhao
JJ
.
Isoform-selective phosphatidylinositol 3-kinase inhibition in cancer
.
J Clin Oncol
.
2018
;
36
(
13
):
1339
-
1342
.
44.
Liu
P
,
Cheng
H
,
Roberts
TM
,
Zhao
JJ
.
Targeting the phosphoinositide 3-kinase pathway in cancer
.
Nat Rev Drug Discov
.
2009
;
8
(
8
):
627
-
644
.
45.
Vasan
N
,
Cantley
LC
.
At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy
.
Nat Rev Clin Oncol
.
2022
;
19
(
7
):
471
-
485
.
46.
Andre
F
,
Ciruelos
E
,
Rubovszky
G
, et al
.
Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer
.
N Engl J Med
.
2019
;
380
(
20
):
1929
-
1940
.
47.
Furman
RR
,
Sharman
JP
,
Coutre
SE
, et al
.
Idelalisib and rituximab in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2014
;
370
(
11
):
997
-
1007
.
48.
Koundouros
N
,
Poulogiannis
G
.
Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer
.
Front Oncol
.
2018
;
8
:
160
.
49.
Winkler
DG
,
Faia
KL
,
DiNitto
JP
, et al
.
PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models
.
Chem Biol
.
2013
;
20
(
11
):
1364
-
1374
.
50.
Flinn
IW OBS
,
O'Brien
S
,
Kahl
B
, et al
.
Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies
.
Blood
.
2018
;
131
(
8
):
877
-
887
.
51.
Liu
N
,
Rowley
BR
,
Bull
CO
, et al
.
BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110alpha and p110delta activities in tumor cell lines and xenograft models
.
Mol Cancer Ther
.
2013
;
12
(
11
):
2319
-
2330
.
52.
Konopleva
MY
,
Walter
RB
,
Faderl
SH
, et al
.
Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia
.
Clin Cancer Res
.
2014
;
20
(
8
):
2226
-
2235
.
53.
Lin
KH
,
Rutter
JC
,
Xie
A
, et al
.
P2RY2-AKT activation is a therapeutically actionable consequence of XPO1 inhibition in acute myeloid leukemia
.
Nat Cancer
.
2022
;
3
(
7
):
837
-
851
.
You do not currently have access to this content.
Sign in via your Institution