• High expression levels of miR-145 in plasma are robustly associated with decreased risk of future incident VTE in a population-based study.

  • miR-145 has the potential to serve as a biomarker of incident VTE risk and target for VTE prevention.

Abstract

MicroRNA-145 (miR-145) has been reported to downregulate the expression of tissue factor and factor XI in vitro and decrease venous thrombus formation in animal models. However, the association between miR-145 and risk of future venous thromboembolism (VTE) in the general population remains unknown. We investigated the association between plasma levels of miR-145 and risk of future VTE in a case-cohort study. Incident VTE cases (n = 510) and a subcohort (n = 1890) were derived from the third survey of the Trøndelag Health Study (HUNT3), a population-based cohort. The expression levels of miR-145 were measured in plasma samples obtained at baseline. The study population was divided into quartiles based on miR-145 levels in participants in the subcohort, and weighted Cox regression was used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). Plasma levels of miR-145 were inversely associated with VTE risk. Participants with miR-145 levels in the highest quartile had a 49% lower risk of VTE (HR, 0.51; 95% CI, 0.38-0.68) than those with miR-145 in the lowest quartile in age- and sex-adjusted analysis, and the inverse association was most pronounced for unprovoked VTE (HR, 0.39; 95% CI, 0.25-0.61). Risk estimates remained virtually the same after further adjustment for body mass index, and cancer and arterial cardiovascular disease at baseline. In conclusion, elevated expression levels of miR-145 in plasma were associated with decreased risk of future incident VTE. The protective role of miR-145 against VTE is consistent with previous experimental data and suggests that miR-145 has the potential to be a target for VTE prevention.

1.
Naess
IA
,
Christiansen
SC
,
Romundstad
P
,
Cannegieter
SC
,
Rosendaal
FR
,
Hammerstrøm
J
.
Incidence and mortality of venous thrombosis: a population-based study
.
J Thromb Haemost
.
2007
;
5
(
4
):
692
-
699
.
2.
Arshad
N
,
Bjøri
E
,
Hindberg
K
,
Isaksen
T
,
Hansen
JB
,
Braekkan
SK
.
Recurrence and mortality after first venous thromboembolism in a large population-based cohort
.
J Thromb Haemost
.
2017
;
15
(
2
):
295
-
303
.
3.
Schulman
S
,
Lindmarker
P
,
Holmstrom
M
, et al
.
Post-thrombotic syndrome, recurrence, and death 10 years after the first episode of venous thromboembolism treated with warfarin for 6 weeks or 6 months
.
J Thromb Haemost
.
2006
;
4
(
4
):
734
-
742
.
4.
Klok
FA
,
van der Hulle
T
,
den Exter
PL
,
Lankeit
M
,
Huisman
MV
,
Konstantinides
S
.
The post-PE syndrome: a new concept for chronic complications of pulmonary embolism
.
Blood Rev
.
2014
;
28
(
6
):
221
-
226
.
5.
Jørgensen
H
,
Horváth-Puhó
E
,
Laugesen
K
,
Brækkan
S
,
Hansen
JB
,
Sørensen
HT
.
Risk of a permanent work-related disability pension after incident venous thromboembolism in Denmark: a population-based cohort study
.
PLoS Med
.
2021
;
18
(
8
):
e1003770
.
6.
Jørgensen
H
,
Horváth-Puhó
E
,
Laugesen
K
,
Brækkan
SK
,
Hansen
JB
,
Sørensen
HT
.
Venous thromboembolism and risk of depression: a population-based cohort study
.
J Thromb Haemost
.
2023
;
21
(
4
):
953
-
962
.
7.
Arshad
N
,
Isaksen
T
,
Hansen
JB
,
Braekkan
SK
.
Time trends in incidence rates of venous thromboembolism in a large cohort recruited from the general population
.
Eur J Epidemiol
.
2017
;
32
(
4
):
299
-
305
.
8.
Munster
AM
,
Rasmussen
TB
,
Falstie-Jensen
AM
, et al
.
A changing landscape: temporal trends in incidence and characteristics of patients hospitalized with venous thromboembolism 2006-2015
.
Thromb Res
.
2019
;
176
:
46
-
53
.
9.
Engbers
MJ
,
van Hylckama Vlieg
A
,
Rosendaal
FR
.
Venous thrombosis in the elderly: incidence, risk factors and risk groups
.
J Thromb Haemost
.
2010
;
8
(
10
):
2105
-
2112
.
10.
World Health Organization
.
Fact sheet: obesity and overweight
. Accessed 1 August 2023. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.
11.
Bray
F
,
Ferlay
J
,
Soerjomataram
I
,
Siegel
RL
,
Torre
LA
,
Jemal
A
.
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J Clin
.
2018
;
68
(
6
):
394
-
424
.
12.
Bartel
DP
.
MicroRNAs: target recognition and regulatory functions
.
Cell
.
2009
;
136
(
2
):
215
-
233
.
13.
Paul
P
,
Chakraborty
A
,
Sarkar
D
, et al
.
Interplay between miRNAs and human diseases
.
J Cell Physiol
.
2018
;
233
(
3
):
2007
-
2018
.
14.
Saliminejad
K
,
Khorram Khorshid
HR
,
Soleymani Fard
S
,
Ghaffari
SH
.
An overview of microRNAs: biology, functions, therapeutics, and analysis methods
.
J Cell Physiol
.
2019
;
234
(
5
):
5451
-
5465
.
15.
Mitchell
PS
,
Parkin
RK
,
Kroh
EM
, et al
.
Circulating microRNAs as stable blood-based markers for cancer detection
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
30
):
10513
-
10518
.
16.
Kirschner
MB
,
van Zandwijk
N
,
Reid
G
.
Cell-free microRNAs: potential biomarkers in need of standardized reporting
.
Front Genet
.
2013
;
4
:
56
.
17.
Anijs
RJS
,
Nguyen
YN
,
Cannegieter
SC
,
Versteeg
HH
,
Buijs
JT
.
MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism
.
J Thromb Haemost
.
2023
;
21
(
1
):
7
-
17
.
18.
Rupaimoole
R
,
Slack
FJ
.
MicroRNA therapeutics: towards a new era for the management of cancer and other diseases
.
Nat Rev Drug Discov
.
2017
;
16
(
3
):
203
-
222
.
19.
van Rooij
E
,
Kauppinen
S
.
Development of microRNA therapeutics is coming of age
.
EMBO Mol Med
.
2014
;
6
(
7
):
851
-
864
.
20.
Morelli
VM
,
Brækkan
SK
,
Hansen
JB
.
Role of microRNAs in venous thromboembolism
.
Int J Mol Sci
.
2020
;
21
(
7
):
2602
.
21.
Xiao
J
,
Jing
ZC
,
Ellinor
PT
, et al
.
MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism
.
J Transl Med
.
2011
;
9
:
159
.
22.
Starikova
I
,
Jamaly
S
,
Sorrentino
A
, et al
.
Differential expression of plasma miRNAs in patients with unprovoked venous thromboembolism and healthy control individuals
.
Thromb Res
.
2015
;
136
(
3
):
566
-
572
.
23.
Kessler
T
,
Erdmann
J
,
Vilne
B
, et al
.
Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism
.
J Transl Med
.
2016
;
14
(
1
):
120
.
24.
Wang
X
,
Sundquist
K
,
Elf
JL
, et al
.
Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis
.
Thromb Haemost
.
2016
;
116
(
2
):
328
-
336
.
25.
Sahu
A
,
Jha
PK
,
Prabhakar
A
, et al
.
MicroRNA-145 impedes thrombus formation via targeting tissue factor in venous thrombosis
.
EBioMedicine
.
2017
;
26
:
175
-
186
.
26.
Sun
S
,
Chai
S
,
Zhang
F
,
Lu
L
.
Overexpressed microRNA-103a-3p inhibits acute lower-extremity deep venous thrombosis via inhibition of CXCL12
.
IUBMB Life
.
2019
;
72
(
3
):
492
-
504
.
27.
Wang
X
,
Sundquist
K
,
Svensson
PJ
, et al
.
Association of recurrent venous thromboembolism and circulating microRNAs
.
Clin Epigenetics
.
2019
;
11
(
1
):
28
.
28.
Thibord
F
,
Munsch
G
,
Perret
C
, et al
.
Bayesian network analysis of plasma microRNA sequencing data in patients with venous thrombosis
.
Eur Heart J Suppl
.
2020
;
22
(
Suppl C
):
C34
-
C45
.
29.
Zhang
Y
,
Zhang
Z
,
Wei
R
, et al
.
IL (interleukin)-6 contributes to deep vein thrombosis and is negatively regulated by miR-338-5p
.
Arterioscler Thromb Vasc Biol
.
2020
;
40
(
2
):
323
-
334
.
30.
Gabler
J
,
Basílio
J
,
Steinbrecher
O
,
Kollars
M
,
Kyrle
PA
,
Eichinger
S
.
MicroRNA signatures in plasma of patients with venous thrombosis: a preliminary report
.
Am J Med Sci
.
2021
;
361
(
4
):
509
-
516
.
31.
Nafady
A
,
Rashad
A
,
Nafady-Hego
H
, et al
.
Clinical significance of miRNA-145 and -126 in chronic obstructive pulmonary disease with pulmonary embolism
.
Clin Lab
.
2022
;
68
(
7
).
32.
Ten Cate
V
,
Rapp
S
,
Schulz
A
, et al
.
Circulating microRNAs predict recurrence and death following venous thromboembolism
.
J Thromb Haemost
.
2023
;
21
(
10
):
2797
-
2810
.
33.
Sennblad
B
,
Basu
S
,
Mazur
J
, et al
.
Genome-wide association study with additional genetic and post-transcriptional analyses reveals novel regulators of plasma factor XI levels
.
Hum Mol Genet
.
2017
;
26
(
3
):
637
-
649
.
34.
Villadsen
SB
,
Bramsen
JB
,
Ostenfeld
MS
, et al
.
The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer
.
Br J Cancer
.
2012
;
106
(
2
):
366
-
374
.
35.
Manly
DA
,
Boles
J
,
Mackman
N
.
Role of tissue factor in venous thrombosis
.
Annu Rev Physiol
.
2011
;
73
:
515
-
525
.
36.
Meijers
JC
,
Tekelenburg
WL
,
Bouma
BN
,
Bertina
RM
,
Rosendaal
FR
.
High levels of coagulation factor XI as a risk factor for venous thrombosis
.
N Engl J Med
.
2000
;
342
(
10
):
696
-
701
.
37.
Salomon
O
,
Steinberg
DM
,
Zucker
M
,
Varon
D
,
Zivelin
A
,
Seligsohn
U
.
Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis
.
Thromb Haemost
.
2011
;
105
(
2
):
269
-
273
.
38.
Frischmuth
T
,
Hindberg
K
,
Aukrust
P
, et al
.
Elevated plasma levels of plasminogen activator inhibitor-1 are associated with risk of future incident venous thromboembolism
.
J Thromb Haemost
.
2022
;
20
(
7
):
1618
-
1626
.
39.
Ye
D
,
Shen
Z
,
Zhou
S
.
Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment
.
Cancer Manag Res
.
2019
;
11
:
969
-
979
.
40.
Sawant
D
,
Lilly
B
.
MicroRNA-145 targets in cancer and the cardiovascular system: evidence for common signaling pathways
.
Vasc Biol
.
2020
;
2
(
1
):
R115
-
r128
.
41.
Krokstad
S
,
Langhammer
A
,
Hveem
K
, et al
.
Cohort profile: the HUNT Study, Norway
.
Int J Epidemiol
.
2013
;
42
(
4
):
968
-
977
.
42.
Hagen
K
,
Stovner
LJ
,
Nilsen
KB
,
Kristoffersen
ES
,
Winsvold
BS
.
The impact of C-reactive protein levels on headache frequency in the HUNT study 2006-2008
.
BMC Neurol
.
2019
;
19
(
1
):
229
.
43.
Wang
X
,
Sundquist
J
,
Zoller
B
, et al
.
Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2
.
PLoS One
.
2014
;
9
(
1
):
e86792
.
44.
Bye
A
,
Røsjø
H
,
Aspenes
ST
,
Condorelli
G
,
Omland
T
,
Wisløff
U
.
Circulating microRNAs and aerobic fitness--the HUNT-Study
.
PLoS One
.
2013
;
8
(
2
):
e57496
.
45.
Ameling
S
,
Kacprowski
T
,
Chilukoti
RK
, et al
.
Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study
.
BMC Med Genomics
.
2015
;
8
:
61
.
46.
Folsom
AR
,
Lutsey
PL
,
Astor
BC
,
Cushman
M
.
C-reactive protein and venous thromboembolism. A prospective investigation in the ARIC cohort
.
Thromb Haemost
.
2009
;
102
(
4
):
615
-
619
.
47.
Horvei
LD
,
Grimnes
G
,
Hindberg
K
, et al
.
C-reactive protein, obesity, and the risk of arterial and venous thrombosis
.
J Thromb Haemost
.
2016
;
14
(
8
):
1561
-
1571
.
48.
He
M
,
Wu
N
,
Leong
MC
, et al
.
miR-145 improves metabolic inflammatory disease through multiple pathways
.
J Mol Cell Biol
.
2020
;
12
(
2
):
152
-
162
.
49.
Shahrokhi
SZ
,
Saeidi
L
,
Sadatamini
M
,
Jafarzadeh
M
,
Rahimipour
A
,
Kazerouni
F
.
Can miR-145-5p be used as a marker in diabetic patients?
.
Arch Physiol Biochem
.
2022
;
128
(
5
):
1175
-
1180
.
50.
Clarke
R
,
Shipley
M
,
Lewington
S
, et al
.
Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies
.
Am J Epidemiol
.
1999
;
150
(
4
):
341
-
353
.
51.
Kadkhoda
S
,
Ghafouri-Fard
S
.
Function of miRNA-145-5p in the pathogenesis of human disorders
.
Pathol Res Pract
.
2022
;
231
:
153780
.
52.
Timp
JF
,
Braekkan
SK
,
Versteeg
HH
,
Cannegieter
SC
.
Epidemiology of cancer-associated venous thrombosis
.
Blood
.
2013
;
122
(
10
):
1712
-
1723
.
53.
Nopp
S
,
Kraemmer
D
,
Ay
C
.
Factor XI inhibitors for prevention and treatment of venous thromboembolism: a review on the rationale and update on current evidence
.
Front Cardiovasc Med
.
2022
;
9
:
903029
.
You do not currently have access to this content.
Sign in via your Institution