• Disruption of nSMase-2 alters EV biogenesis and activates an adaptive ISR in HSPCs.

  • Brief ex vivo pharmacological inhibition of nSMase-2 durably enhances long-term repopulation capacity.

Hematopoietic stem and progenitor cell (HSPC) transplantation serves as a curative therapy for many benign and malignant hematopoietic disorders and as a platform for gene therapy. However, growing needs for ex vivo manipulation of HSPC-graft products are limited by barriers in maintaining critical self-renewal and quiescence properties. The role of sphingolipid metabolism in safeguarding these essential cellular properties has been recently recognized, but not yet widely explored. Here, we demonstrate that pharmacologic and genetic inhibition of neutral sphingomyelinase 2 (nSMase-2) leads to sustained improvements in long-term competitive transplantation efficiency after ex vivo culture. Mechanistically, nSMase-2 blockade activates a canonical integrated stress response (ISR) and promotes metabolic quiescence in human and murine HSPCs. These adaptations result in part from disruption in sphingolipid metabolism that impairs the release of nSMase-2–dependent extracellular vesicles (EVs). The aggregate findings link EV trafficking and the ISR as a regulatory dyad guarding HSPC homeostasis and long-term fitness. Translationally, transient nSMase-2 inhibition enables ex vivo graft manipulation with enhanced HSPC potency.

1.
Watts
KL
,
Adair
J
,
Kiem
HP
.
Hematopoietic stem cell expansion and gene therapy
.
Cytotherapy
.
2011
;
13
(
10
):
1164
-
1171
.
2.
Xie
J
,
Zhang
C
.
Ex vivo expansion of hematopoietic stem cells
.
Sci China Life Sci
.
2015
;
58
(
9
):
839
-
853
.
3.
Kumar
S
,
Geiger
H
.
HSC niche biology and HSC expansion ex vivo
.
Trends Mol Med
.
2017
;
23
(
9
):
799
-
819
.
4.
Bryder
D
,
Rossi
DJ
,
Weissman
IL
.
Hematopoietic stem cells: the paradigmatic tissue-specific stem cell
.
Am J Pathol
.
2006
;
169
(
2
):
338
-
346
.
5.
Blank
U
,
Karlsson
G
,
Karlsson
S
.
Signaling pathways governing stem-cell fate
.
Blood
.
2008
;
111
(
2
):
492
-
503
.
6.
Zhang
CC
,
Lodish
HF
.
Cytokines regulating hematopoietic stem cell function
.
Curr Opin Hematol
.
2008
;
15
(
4
):
307
-
311
.
7.
Hurwitz
SN
,
Jung
SK
,
Kurre
P
.
Hematopoietic stem and progenitor cell signaling in the niche
.
Leukemia
.
2020
;
34
(
12
):
3136
-
3148
.
8.
Che
JLC
,
Bode
D
,
Kucinski
I
, et al
.
Identification and characterization of in vitro expanded hematopoietic stem cells
.
EMBO Rep
.
2022
;
23
(
10
):
e55502
.
9.
Schönberger
K
,
Obier
N
,
Romero-Mulero
MC
, et al
.
Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity
.
Cell Stem Cell
.
2022
;
29
(
1
):
131
-
148.e10
.
10.
Xie
SZ
,
Garcia-Prat
L
,
Voisin
V
, et al
.
Sphingolipid modulation activates proteostasis programs to govern human hematopoietic stem cell self-renewal
.
Cell Stem Cell
.
2019
;
25
(
5
):
639
-
653.e7
.
11.
Li
C
,
Wu
B
,
Li
Y
, et al
.
Loss of sphingosine kinase 2 promotes the expansion of hematopoietic stem cells by improving their metabolic fitness
.
Blood
.
2022
;
140
(
15
):
1686
-
1701
.
12.
Wu
CY
,
Jhang
JG
,
Lin
WS
, et al
.
Dihydroceramide desaturase promotes the formation of intraluminal vesicles and inhibits autophagy to increase exosome production
.
iScience
.
2021
;
24
(
12
):
103437
.
13.
Lee
SY
,
Kim
JR
,
Hu
Y
, et al
.
Cardiomyocyte specific deficiency of serine palmitoyltransferase subunit 2 reduces ceramide but leads to cardiac dysfunction
.
J Biol Chem
.
2012
;
287
(
22
):
18429
-
18439
.
14.
Wu
BX
,
Clarke
CJ
,
Hannun
YA
.
Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses
.
NeuroMolecular Med
.
2010
;
12
(
4
):
320
-
330
.
15.
Airola
MV
,
Hannun
YA
.
Sphingolipid metabolism and neutral sphingomyelinases
.
Handb Exp Pharmacol
.
2013
;
215
:
57
-
76
.
16.
Shamseddine
AA
,
Airola
MV
,
Hannun
YA
.
Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes
.
Adv Biol Regul
.
2015
;
57
:
24
-
41
.
17.
Trajkovic
K
,
Hsu
C
,
Chiantia
S
, et al
.
Ceramide triggers budding of exosome vesicles into multivesicular endosomes
.
Science
.
2008
;
319
(
5867
):
1244
-
1247
.
18.
Horbay
R
,
Hamraghani
A
,
Ermini
L
,
Holcik
S
,
Beug
ST
,
Yeganeh
B
.
Role of ceramides and lysosomes in extracellular vesicle biogenesis, cargo sorting and release
.
Int J Mol Sci
.
2022
;
23
(
23
):
15317
.
19.
Verderio
C
,
Gabrielli
M
,
Giussani
P
.
Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles
.
J Lipid Res
.
2018
;
59
(
8
):
1325
-
1340
.
20.
Goldberg
LR
.
Extracellular vesicles and hematopoietic stem cell aging
.
Arterioscler Thromb Vasc Biol
.
2021
;
41
(
8
):
e399
-
e416
.
21.
Wilkinson
AC
,
Ishida
R
,
Kikuchi
M
, et al
.
Long-term ex vivo hematopoietic stem cell expansion affords nonconditioned transplantation
.
Nature
.
2019
;
571
(
7763
):
117
-
121
.
22.
Laurenti
E
,
Doulatov
S
,
Zandi
S
, et al
.
The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment
.
Nat Immunol
.
2013
;
14
(
7
):
756
-
763
.
23.
Le
Q
,
Yao
W
,
Chen
Y
, et al
.
GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal
.
Cell Death Dis
.
2016
;
7
(
11
):
e2478
.
24.
Kent
DG
,
Copley
MR
,
Benz
C
, et al
.
Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential
.
Blood
.
2009
;
113
(
25
):
6342
-
6350
.
25.
Hérault
L
,
Poplineau
M
,
Mazuel
A
,
Platet
N
,
Remy
É
,
Duprez
E
.
Single-cell RNA-seq reveals a concomitant delay in differentiation and cell cycle of aged hematopoietic stem cells
.
BMC Biol
.
2021
;
19
(
1
):
19
.
26.
Harris
BD
,
Lee
J
,
Gillis
J
.
A meta-analytic single-cell atlas of mouse bone marrow hematopoietic development
.
bioRxiv
.
Preprint posted online 12 August 2021
.
27.
Wahlestedt
M
,
Ladopoulos
V
,
Hidalgo
I
, et al
.
Critical modulation of hematopoietic lineage fate by hepatic leukemia factor
.
Cell Rep
.
2017
;
21
(
8
):
2251
-
2263
.
28.
Jung
H
,
Kim
MJ
,
Kim
DO
, et al
.
TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress
.
Cell Metab
.
2013
;
18
(
1
):
75
-
85
.
29.
Guiu
J
,
Bergen
DJM
,
De Pater
E
, et al
.
Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence
.
J Exp Med
.
2014
;
211
(
12
):
2411
-
2423
.
30.
Kumar
S
,
Vassallo
JD
,
Nattamai
KJ
, et al
.
pH regulates hematopoietic stem cell potential via polyamines
.
EMBO Rep
.
2023
;
24
(
5
):
e55373
.
31.
Tang
L
,
Bergevoet
SM
,
Gilissen
C
, et al
.
Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells
.
BMC Pharmacol
.
2010
;
10
:
12
.
32.
Vidal
M
.
Exosomes: revisiting their role as “garbage bags.”
.
Traffic
.
2019
;
20
(
11
):
815
-
828
.
33.
Stratman
AN
,
Crewe
C
,
Stahl
PD
.
The microenvironment—a general hypothesis on the homeostatic function of extracellular vesicles
.
FASEB Bioadv
.
2022
;
4
(
5
):
284
-
297
.
34.
Gu
H
,
Chen
C
,
Hao
X
, et al
.
Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis
.
J Clin Invest
.
2016
;
126
(
12
):
4537
-
4553
.
35.
Luo
Y
,
Shao
L
,
Chang
J
, et al
.
M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion
.
Blood Adv
.
2018
;
2
(
8
):
859
-
870
.
36.
Qian
H
,
Buza-Vidas
N
,
Hyland
CD
, et al
.
Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells
.
Cell Stem Cell
.
2007
;
1
(
6
):
671
-
684
.
37.
Yoshihara
H
,
Arai
F
,
Hosokawa
K
, et al
.
Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche
.
Cell Stem Cell
.
2007
;
1
(
6
):
685
-
697
.
38.
Todkar
K
,
Chikhi
L
,
Desjardins
V
,
El-Mortada
F
,
Pépin
G
,
Germain
M
.
Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs
.
Nat Commun
.
2021
;
12
(
1
):
1971
.
39.
Zhang
Y
,
Tan
J
,
Miao
Y
,
Zhang
Q
.
The effect of extracellular vesicles on the regulation of mitochondria under hypoxia
.
Cell Death Dis
.
2021
;
12
(
4
):
358
-
414
.
40.
Puhm
F
,
Afonyushkin
T
,
Resch
U
, et al
.
Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells
.
Circ Res
.
2019
;
125
(
1
):
43
-
52
.
41.
Phinney
DG
,
Di Giuseppe
M
,
Njah
J
, et al
.
Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs
.
Nat Commun
.
2015
;
6
:
8472
.
42.
Peruzzotti-Jametti
L
,
Bernstock
JD
,
Willis
CM
, et al
.
Neural stem cells traffic functional mitochondria via extracellular vesicles
.
PLoS Biol
.
2021
;
19
(
4
):
e3001166
.
43.
Thomas
MA
,
Fahey
MJ
,
Pugliese
BR
,
Irwin
RM
,
Antonyak
MA
,
Delco
ML
.
Human mesenchymal stromal cells release functional mitochondria in extracellular vesicles
.
Front Bioeng Biotechnol
.
2022
;
10
:
870193
.
44.
Zhang
X
,
Hubal
MJ
,
Kraus
VB
.
Immune cell extracellular vesicles and their mitochondrial content decline with ageing
.
Immun Ageing
.
2020
;
17
:
1
.
45.
Colombo
M
,
Moita
C
,
van Niel
G
, et al
.
Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles
.
J Cell Sci
.
2013
;
126
(
pt 24
):
5553
-
5565
.
46.
Hurwitz
SN
,
Nkosi
D
,
Conlon
MM
, et al
.
CD63 regulates Epstein-Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling
.
J Virol
.
2017
;
91
(
5
):
e02251
-
e022616
.
47.
Hurwitz
SN
,
Conlon
MM
,
Rider
MA
,
Brownstein
NC
,
Meckes
DG
.
Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis
.
J Extracell Vesicles
.
2016
;
5
:
31295
.
48.
Hurwitz
SN
,
Cheerathodi
MR
,
Nkosi
D
,
York
SB
,
Meckes
DG
.
Tetraspanin CD63 bridges autophagic and endosomal processes to regulate exosomal secretion and intracellular signaling of Epstein-Barr virus LMP1
.
J Virol
.
2018
;
92
(
5
):
e01969
-
e02017
.
49.
Verweij
FJ
,
van Eijndhoven
MAJ
,
Hopmans
ES
, et al
.
LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation
.
EMBO J
.
2011
;
30
(
11
):
2115
-
2129
.
50.
Hu
M
,
Lu
Y
,
Wang
S
, et al
.
CD63 acts as a functional marker in maintaining hematopoietic stem cell quiescence through supporting TGFβ signaling in mice
.
Cell Death Differ
.
2022
;
29
(
1
):
178
-
191
.
51.
van Galen
P
,
Mbong
N
,
Kreso
A
, et al
.
Integrated stress response activity marks stem cells in normal hematopoiesis and leukemia
.
Cell Rep
.
2018
;
25
(
5
):
1109
-
1117.e5
.
52.
Koromilas
AE
.
M(en)TORship lessons on life and death by the integrated stress response
.
Biochim Biophys Acta Gen Subj
.
2019
;
1863
(
3
):
644
-
649
.
53.
Torrence
ME
,
MacArthur
MR
,
Hosios
AM
, et al
.
The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals
.
Elife
.
2021
;
10
:
e63326
.
54.
Brüning
A
,
Rahmeh
M
,
Friese
K
.
Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation
.
Mol Oncol
.
2013
;
7
(
6
):
1012
-
1018
.
55.
Fernandes
H
,
Moura
J
,
Carvalho
E
.
mTOR signaling as a regulator of hematopoietic stem cell fate
.
Stem Cell Rev Rep
.
2021
;
17
(
4
):
1312
-
1322
.
56.
Baumgartner
C
,
Toifl
S
,
Farlik
M
, et al
.
An ERK-dependent feedback mechanism prevents hematopoietic stem cell exhaustion
.
Cell Stem Cell
.
2018
;
22
(
6
):
879
-
892.e6
.
57.
Pakos-Zebrucka
K
,
Koryga
I
,
Mnich
K
,
Ljujic
M
,
Samali
A
,
Gorman
AM
.
The integrated stress response
.
EMBO Rep
.
2016
;
17
(
10
):
1374
-
1395
.
58.
Wilkinson
AC
,
Ishida
R
,
Nakauchi
H
,
Yamazaki
S
.
Long-term ex vivo expansion of mouse hematopoietic stem cells
.
Nat Protoc
.
2020
;
15
(
2
):
628
-
648
.
59.
Hurwitz
SN
,
Rider
MA
,
Bundy
JL
,
Liu
X
,
Singh
RK
,
Meckes
DG
.
Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers
.
Oncotarget
.
2016
;
7
(
52
):
86999
-
87015
.
60.
Tripathi
D
,
Biswas
B
,
Manhas
A
, et al
.
Proinflammatory effect of endothelial microparticles is mitochondria mediated and modulated through MAPKAPK2 (MAPK-activated protein kinase 2) leading to attenuation of cardiac hypertrophy
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
6
):
1100
-
1112
.
61.
Ludin
A
,
Gur-Cohen
S
,
Golan
K
, et al
.
Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment
.
Antioxid Redox Signal
.
2014
;
21
(
11
):
1605
-
1619
.
62.
Bai
L
,
Best
G
,
Xia
W
, et al
.
Expression of intracellular reactive oxygen species in hematopoietic stem cells correlates with time to neutrophil and platelet engraftment in patients undergoing autologous bone marrow transplantation
.
Biol Blood Marrow Transplant
.
2018
;
24
(
10
):
1997
-
2002
.
63.
Jang
YY
,
Sharkis
SJ
.
A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche
.
Blood
.
2007
;
110
(
8
):
3056
-
3063
.
64.
Porto
ML
,
Rodrigues
BP
,
Menezes
TN
, et al
.
Reactive oxygen species contribute to dysfunction of bone marrow hematopoietic stem cells in aged C57BL/6 J mice
.
J Biomed Sci
.
2015
;
22
:
97
.
65.
Ito
K
,
Hirao
A
,
Arai
F
, et al
.
Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells
.
Nat Med
.
2006
;
12
(
4
):
446
-
451
.
66.
Tan
DQ
,
Li
Y
,
Yang
C
, et al
.
PRMT5 modulates splicing for genome integrity and preserves proteostasis of hematopoietic stem cells
.
Cell Rep
.
2019
;
26
(
9
):
2316
-
2328.e6
.
67.
Signer
RAJ
,
Qi
L
,
Zhao
Z
, et al
.
The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs
.
Genes Dev
.
2016
;
30
(
15
):
1698
-
1703
.
68.
Blanco
S
,
Bandiera
R
,
Popis
M
, et al
.
Stem cell function and stress response are controlled by protein synthesis
.
Nature
.
2016
;
534
(
7607
):
335
-
340
.
69.
Khajuria
RK
,
Munschauer
M
,
Ulirsch
JC
, et al
.
Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis
.
Cell
.
2018
;
173
(
1
):
90
-
103.e19
.
70.
Cai
X
,
Gao
L
,
Teng
L
, et al
.
Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells
.
Cell Stem Cell
.
2015
;
17
(
2
):
165
-
177
.
71.
Signer
RAJ
,
Magee
JA
,
Salic
A
,
Morrison
SJ
.
Haematopoietic stem cells require a highly regulated protein synthesis rate
.
Nature
.
2014
;
509
(
7498
):
49
-
54
.
72.
Hidalgo San Jose
L
,
Sunshine
MJ
,
Dillingham
CH
, et al
.
Modest declines in proteome quality impair hematopoietic stem cell self-renewal
.
Cell Rep
.
2020
;
30
(
1
):
69
-
80.e6
.
73.
Chua
BA
,
Van Der Werf
I
,
Jamieson
C
,
Signer
RAJ
.
Post-transcriptional regulation of homeostatic, stressed, and malignant stem cells
.
Cell Stem Cell
.
2020
;
26
(
2
):
138
-
159
.
74.
Chua
BA
,
Signer
RAJ
.
Hematopoietic stem cell regulation by the proteostasis network
.
Curr Opin Hematol
.
2020
;
27
(
4
):
254
-
263
.
75.
Kruta
M
,
Sunshine
MJ
,
Chua
BA
, et al
.
Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging
.
Cell Stem Cell
.
2021
;
28
(
11
):
1950
-
1965.e6
.
76.
Itokawa
N
,
Oshima
M
,
Koide
S
, et al
.
Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells
.
Nat Commun
.
2022
;
13
(
1
):
2691
.
77.
Foster
SL
,
Hargreaves
DC
,
Medzhitov
R
.
Gene-specific control of inflammation by TLR-induced chromatin modifications
.
Nature
.
2007
;
447
(
7147
):
972
-
978
.
78.
Saeed
S
,
Quintin
J
,
Kerstens
HHD
, et al
.
Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity
.
Science
.
2014
;
345
(
6204
):
1251086
.
79.
Novakovic
B
,
Habibi
E
,
Wang
SY
, et al
.
β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance
.
Cell
.
2016
;
167
(
5
):
1354
-
1368.e14
.
80.
De Zuani
M
,
Frič
J
.
Train the trainer: hematopoietic stem cell control of trained immunity
.
Front Immunol
.
2022
;
13
:
827250
.
81.
Ding
C
,
Shrestha
R
,
Zhu
X
, et al
.
Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis
.
Nat Immunol
.
2023
;
24
(
2
):
239
-
254
.
82.
Granot
N
,
Storb
R
.
History of hematopoietic cell transplantation: challenges and progress
.
Haematologica
.
2020
;
105
(
12
):
2716
-
2729
.
83.
Juric
MK
,
Ghimire
S
,
Ogonek
J
, et al
.
Milestones of hematopoietic stem cell transplantation – from first human studies to current developments
.
Front Immunol
.
2016
;
7
:
470
.
84.
Perez-Riverol
Y
,
Bai
J
,
Bandla
C
, et al
.
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D543
-
D552
.
You do not currently have access to this content.
Sign in via your Institution