• Endothelial KIT ligand deletion reduces systemic KIT ligand, precluding conclusions on role of endothelial niche expression of KIT ligand.

  • HSC homeostasis is regulated primarily by soluble rather than membrane KIT ligand expression in endothelial cells.

A critical regulatory role of hematopoietic stem cell (HSC) vascular niches in the bone marrow has been implicated to occur through endothelial niche cell expression of KIT ligand. However, endothelial-derived KIT ligand is expressed in both a soluble and membrane-bound form and not unique to bone marrow niches, and it is also systemically distributed through the circulatory system. Here, we confirm that upon deletion of both the soluble and membrane-bound forms of endothelial-derived KIT ligand, HSCs are reduced in mouse bone marrow. However, the deletion of endothelial-derived KIT ligand was also accompanied by reduced soluble KIT ligand levels in the blood, precluding any conclusion as to whether the reduction in HSC numbers reflects reduced endothelial expression of KIT ligand within HSC niches, elsewhere in the bone marrow, and/or systemic soluble KIT ligand produced by endothelial cells outside of the bone marrow. Notably, endothelial deletion, specifically of the membrane-bound form of KIT ligand, also reduced systemic levels of soluble KIT ligand, although with no effect on stem cell numbers, implicating an HSC regulatory role primarily of soluble rather than membrane KIT ligand expression in endothelial cells. In support of a role of systemic rather than local niche expression of soluble KIT ligand, HSCs were unaffected in KIT ligand deleted bones implanted into mice with normal systemic levels of soluble KIT ligand. Our findings highlight the need for more specific tools to unravel niche-specific roles of regulatory cues expressed in hematopoietic niche cells in the bone marrow.

1.
Zon
LI
.
Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal
.
Nature
.
2008
;
453
(
7193
):
306
-
313
.
2.
Schofield
R
.
The relationship between the spleen colony-forming cell and the haemopoietic stem cell
.
Blood Cells
.
1978
;
4
(
1-2
):
7
-
25
.
3.
Pinho
S
,
Frenette
PS
.
Haematopoietic stem cell activity and interactions with the niche
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
5
):
303
-
320
.
4.
Crane
GM
,
Jeffery
E
,
Morrison
SJ
.
Adult haematopoietic stem cell niches
.
Nat Rev Immunol
.
2017
;
17
(
9
):
573
-
590
.
5.
Morrison
SJ
,
Scadden
DT
.
The bone marrow niche for haematopoietic stem cells
.
Nature
.
2014
;
505
(
7483
):
327
-
334
.
6.
Calvi
LM
,
Adams
GB
,
Weibrecht
KW
, et al
.
Osteoblastic cells regulate the haematopoietic stem cell niche
.
Nature
.
2003
;
425
(
6960
):
841
-
846
.
7.
Ding
L
,
Saunders
TL
,
Enikolopov
G
,
Morrison
SJ
.
Endothelial and perivascular cells maintain haematopoietic stem cells
.
Nature
.
2012
;
481
(
7382
):
457
-
462
.
8.
Zhao
M
,
Perry
JM
,
Marshall
H
, et al
.
Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells
.
Nat Med
.
2014
;
20
(
11
):
1321
-
1326
.
9.
Yamazaki
S
,
Ema
H
,
Karlsson
G
, et al
.
Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche
.
Cell
.
2011
;
147
(
5
):
1146
-
1158
.
10.
Mendez-Ferrer
S
,
Michurina
TV
,
Ferraro
F
, et al
.
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
.
Nature
.
2010
;
466
(
7308
):
829
-
834
.
11.
Kunisaki
Y
,
Bruns
I
,
Scheiermann
C
, et al
.
Arteriolar niches maintain haematopoietic stem cell quiescence
.
Nature
.
2013
;
502
(
7473
):
637
-
643
.
12.
Christodoulou
C
,
Spencer
JA
,
Yeh
SCA
, et al
.
Live-animal imaging of native haematopoietic stem and progenitor cells
.
Nature
.
2020
;
578
(
7794
):
278
-
283
.
13.
Broudy
VC
.
Stem cell factor and hematopoiesis
.
Blood
.
1997
;
90
(
4
):
1345
-
1364
.
14.
Huang
E
,
Nocka
K
,
Beier
DR
, et al
.
The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus
.
Cell
.
1990
;
63
(
1
):
225
-
233
.
15.
Kara
N
,
Xue
Y
,
Zhao
Z
, et al
.
Endothelial and leptin receptor(+) cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow
.
Dev Cell
.
2023
;
58
(
5
):
348
-
360.e6
.
16.
Flanagan
JG
,
Chan
DC
,
Leder
P
.
Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant
.
Cell
.
1991
;
64
(
5
):
1025
-
1035
.
17.
Zhou
BO
,
Yue
R
,
Murphy
MM
,
Peyer
JG
,
Morrison
SJ
.
Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
.
Cell Stem Cell
.
2014
;
15
(
2
):
154
-
168
.
18.
Barker
JE
.
Sl/Sld hematopoietic progenitors are deficient in situ
.
Exp Hematol
.
1994
;
22
(
2
):
174
-
177
.
19.
Barker
JE
.
Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects
.
Exp Hematol
.
1997
;
25
(
6
):
542
-
547
.
20.
Wolf
NS
.
Dissecting the hematopoietic microenvironment. III. Evidence for a positive short range stimulus for cellular proliferation
.
Cell Tissue Kinet
.
1978
;
11
(
4
):
335
-
345
.
21.
Buono
M
,
Facchini
R
,
Matsuoka
S
, et al
.
A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors
.
Nat Cell Biol
.
2016
;
18
(
2
):
157
-
167
.
22.
He
L
,
Vanlandewijck
M
,
Mae
MA
, et al
.
Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types
.
Sci Data
.
2018
;
5
:
180160
.
23.
Vanlandewijck
M
,
He
L
,
Mae
MA
, et al
.
A molecular atlas of cell types and zonation in the brain vasculature
.
Nature
.
2018
;
554
(
7693
):
475
-
480
.
24.
Foster
BM
,
Langsten
KL
,
Mansour
A
,
Shi
L
,
Kerr
BA
.
Tissue distribution of stem cell factor in adults
.
Exp Mol Pathol
.
2021
;
122
:
104678
.
25.
Schwenk
F
,
Baron
U
,
Rajewsky
K
.
A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells
.
Nucleic Acids Res
.
1995
;
23
(
24
):
5080
-
5081
.
26.
DeFalco
J
,
Tomishima
M
,
Liu
H
, et al
.
Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus
.
Science
.
2001
;
291
(
5513
):
2608
-
2613
.
27.
Holdcraft
RW
,
Braun
RE
.
Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids
.
Development
.
2004
;
131
(
2
):
459
-
467
.
28.
Comazzetto
S
,
Murphy
MM
,
Berto
S
,
Jeffery
E
,
Zhao
Z
,
Morrison
SJ
.
Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow
.
Cell Stem Cell
.
2019
;
24
(
3
):
477
-
486.e6
.
29.
Sarvella
PA
,
Russell
LB
.
Steel, a new dominant gene in the house mouse
.
J Hered
.
1956
;
47
(
3
):
123
-
128
.
30.
Sato
T
,
Yokonishi
T
,
Komeya
M
, et al
.
Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
42
):
16934
-
16938
.
31.
Sanjuan-Pla
A
,
Macaulay
IC
,
Jensen
CT
, et al
.
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
.
Nature
.
2013
;
502
(
7470
):
232
-
236
.
32.
Pronk
C
,
Rossi
D
,
Månsson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell
.
2007
;
1
(
4
):
428
-
442
.
33.
Moreau
JM
,
Berger
A
,
Nelles
ME
, et al
.
Inflammation rapidly reorganizes mouse bone marrow B cells and their environment in conjunction with early IgM responses
.
Blood
.
2015
;
126
(
10
):
1184
-
1192
.
34.
Luis
TC
,
Luc
S
,
Mizukami
T
, et al
.
Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors
.
Nat Immunol
.
2016
;
17
(
12
):
1424
-
1435
.
35.
Wilkinson
AC
,
Igarashi
KJ
,
Nakauchi
H
.
Haematopoietic stem cell self-renewal in vivo and ex vivo
.
Nat Rev Genet
.
2020
;
21
(
9
):
541
-
554
.
36.
Chan
CK
,
Chen
CC
,
Luppen
CA
, et al
.
Endochondral ossification is required for haematopoietic stem-cell niche formation
.
Nature
.
2009
;
457
(
7228
):
490
-
494
.
37.
Varas
F
,
Grande
T
,
Ramirez
A
,
Bueren
JA
.
Implantation of bone marrow beneath the kidney capsule results in transfer not only of functional stroma but also of hematopoietic repopulating cells
.
Blood
.
2000
;
96
(
6
):
2307
-
2309
.
38.
Motro
B
,
van der Kooy
D
,
Rossant
J
,
Reith
A
,
Bernstein
A
.
Contiguous patterns of c-kit and steel expression: analysis of mutations at the W and Sl loci
.
Development
.
1991
;
113
(
4
):
1207
-
1221
.
39.
Christensen
JL
,
Wright
DE
,
Wagers
AJ
,
Weissman
IL
.
Circulation and chemotaxis of fetal hematopoietic stem cells
.
PLoS Biol
.
2004
;
2
(
3
):
E75
.
40.
Coşkun
S
,
Chao
H
,
Vasavada
H
, et al
.
Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells
.
Cell Rep
.
2014
;
9
(
2
):
581
-
590
.
41.
Hall
TD
,
Kim
H
,
Dabbah
M
, et al
.
Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth
.
Nat Commun
.
2022
;
13
(
1
):
5403
.
42.
Russell
ES
.
Hereditary anemias of the mouse: a review for geneticists
.
Adv Genet
.
1979
;
20
:
357
-
459
.
43.
Rossi
P
,
Sette
C
,
Dolci
S
,
Geremia
R
.
Role of c-kit in mammalian spermatogenesis
.
J Endocrinol Invest
.
2000
;
23
(
9
):
609
-
615
.
44.
Peng
YJ
,
Tang
XT
,
Shu
HS
,
Dong
W
,
Shao
H
,
Zhou
BO
.
Sertoli cells are the source of stem cell factor for spermatogenesis
.
Development
.
2023
;
150
(
6
):
dev200706
.
45.
Lecureuil
C
,
Fontaine
I
,
Crepieux
P
,
Guillou
F
.
Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice
.
Genesis
.
2002
;
33
(
3
):
114
-
118
.
46.
Nakagawa
T
,
Sharma
M
,
Nabeshima
Y
,
Braun
RE
,
Yoshida
S
.
Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment
.
Science
.
2010
;
328
(
5974
):
62
-
67
.
You do not currently have access to this content.
Sign in via your Institution