In this spotlight, we review technical issues that compromise single-cell analysis of tissue macrophages, including limited and unrepresentative yields, fragmentation and generation of remnants, and activation during tissue disaggregation. These issues may lead to a misleading definition of subpopulations of macrophages and the expression of macrophage-specific transcripts by unrelated cells. Recognition of the technical limitations of single-cell approaches is required in order to map the full spectrum of tissue-resident macrophage heterogeneity and assess its biological significance.

1.
Hume
DA
,
Caruso
M
,
Ferrari-Cestari
M
,
Summers
KM
,
Pridans
C
,
Irvine
KM
.
Phenotypic impacts of CSF1R deficiencies in humans and model organisms
.
J Leukoc Biol
.
2020
;
107
(
2
):
205
-
219
.
2.
Grabert
K
,
Sehgal
A
,
Irvine
KM
, et al
.
A transgenic line that reports CSF1R protein expression provides a definitive marker for the mouse mononuclear phagocyte system
.
J Immunol
.
2020
;
205
(
11
):
3154
-
3166
.
3.
Summers
KM
,
Bush
SJ
,
Hume
DA
.
Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system
.
PLoS Biol
.
2020
;
18
(
10
):
e3000859
.
4.
Mass
E
,
Nimmerjahn
F
,
Kierdorf
K
,
Schlitzer
A
.
Tissue-specific macrophages: how they develop and choreograph tissue biology
.
Nat Rev Immunol
.
2023
:
1
-
17
.
5.
Hume
DA
.
Differentiation and heterogeneity in the mononuclear phagocyte system
.
Mucosal Immunol
.
2008
;
1
(
6
):
432
-
441
.
6.
Hume
DA
,
Irvine
KM
,
Pridans
C
.
The mononuclear phagocyte system: the relationship between monocytes and macrophages
.
Trends Immunol
.
2019
;
40
(
2
):
98
-
112
.
7.
Sehgal
A
,
Carter-Cusack
D
,
Keshvari
S
, et al
.
Fate-mapping studies in inbred mice: a model for understanding macrophage development and homeostasis?
.
Eur J Immunol
.
2023
;
53
(
8
):
e2250312
.
8.
Ng
LG
,
Liu
Z
,
Kwok
I
,
Ginhoux
F
.
Origin and heterogeneity of tissue myeloid cells: a focus on GMP-derived monocytes and neutrophils
.
Annu Rev Immunol
.
2023
;
41
:
375
-
404
.
9.
Guilliams
M
,
Thierry
GR
,
Bonnardel
J
,
Bajenoff
M
.
Establishment and maintenance of the macrophage niche
.
Immunity
.
2020
;
52
(
3
):
434
-
451
.
10.
Ginhoux
F
,
Yalin
A
,
Dutertre
CA
,
Amit
I
.
Single-cell immunology: past, present, and future
.
Immunity
.
2022
;
55
(
3
):
393
-
404
.
11.
Sanin
DE
,
Ge
Y
,
Marinkovic
E
, et al
.
A common framework of monocyte-derived macrophage activation
.
Sci Immunol
.
2022
;
7
(
70
):
eabl7482
.
12.
Dick
SA
,
Wong
A
,
Hamidzada
H
, et al
.
Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles
.
Sci Immunol
.
2022
;
7
(
67
):
eabf7777
.
13.
Bassler
K
,
Schulte-Schrepping
J
,
Warnat-Herresthal
S
,
Aschenbrenner
AC
,
Schultze
JL
.
The myeloid cell compartment-cell by cell
.
Annu Rev Immunol
.
2019
;
37
:
269
-
293
.
14.
Keshvari
S
,
Caruso
M
,
Teakle
N
, et al
.
CSF1R-dependent macrophages control postnatal somatic growth and organ maturation
.
PLoS Genet
.
2021
;
17
(
6
):
e1009605
.
15.
Rojo
R
,
Raper
A
,
Ozdemir
DD
, et al
.
Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations
.
Nat Commun
.
2019
;
10
(
1
):
3215
.
16.
Haimon
Z
,
Volaski
A
,
Orthgiess
J
, et al
.
Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies
.
Nat Immunol
.
2018
;
19
(
6
):
636
-
644
.
17.
Millard
SM
,
Heng
O
,
Opperman
KS
, et al
.
Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues
.
Cell Rep
.
2021
;
37
(
8
):
110058
.
18.
Mondor
I
,
Baratin
M
,
Lagueyrie
M
, et al
.
Lymphatic endothelial cells are essential components of the subcapsular sinus macrophage niche
.
Immunity
.
2019
;
50
(
6
):
1453
-
1466.e4
.
19.
Batoon
L
,
Millard
SM
,
Wullschleger
ME
, et al
.
CD169(+) macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair
.
Biomaterials
.
2019
;
196
:
51
-
66
.
20.
Kaur
S
,
Raggatt
LJ
,
Batoon
L
,
Hume
DA
,
Levesque
JP
,
Pettit
AR
.
Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches
.
Semin Cell Dev Biol
.
2017
;
61
:
12
-
21
.
21.
Tabula Muris Consortium
.
Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
.
Nature
.
2018
;
562
(
7727
):
367
-
372
.
22.
Han
X
,
Wang
R
,
Zhou
Y
, et al
.
Mapping the mouse cell atlas by Microwell-seq
.
Cell
.
2018
;
172
(
5
):
1091
-
1107.e1017
.
23.
Han
X
,
Zhou
Z
,
Fei
L
, et al
.
Construction of a human cell landscape at single-cell level
.
Nature
.
2020
;
581
(
7808
):
303
-
309
.
24.
Gray
EE
,
Friend
S
,
Suzuki
K
,
Phan
TG
,
Cyster
JG
.
Subcapsular sinus macrophage fragmentation and CD169+ bleb acquisition by closely associated IL-17-committed innate-like lymphocytes
.
PLoS One
.
2012
;
7
(
6
):
e38258
.
25.
Baccin
C
,
Al-Sabah
J
,
Velten
L
, et al
.
Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization
.
Nat Cell Biol
.
2020
;
22
(
1
):
38
-
48
.
26.
Li
W
,
Wang
Y
,
Zhao
H
, et al
.
Identification and transcriptome analysis of erythroblastic island macrophages
.
Blood
.
2019
;
134
(
5
):
480
-
491
.
27.
Romano
L
,
Seu
KG
,
Papoin
J
, et al
.
Erythroblastic islands foster granulopoiesis in parallel to terminal erythropoiesis
.
Blood
.
2022
;
140
(
14
):
1621
-
1634
.
28.
Tay
J
,
Bisht
K
,
McGirr
C
, et al
.
Imaging flow cytometry reveals that granulocyte colony-stimulating factor treatment causes loss of erythroblastic islands in the mouse bone marrow
.
Exp Hematol
.
2020
;
82
:
33
-
42
.
29.
Popescu
DM
,
Botting
RA
,
Stephenson
E
, et al
.
Decoding human fetal liver haematopoiesis
.
Nature
.
2019
;
574
(
7778
):
365
-
371
.
30.
Pinho
S
,
Wei
Q
,
Maryanovich
M
, et al
.
VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells
.
Nat Cell Biol
.
2022
;
24
(
3
):
290
-
298
.
31.
Pinho
S
,
Marchand
T
,
Yang
E
,
Wei
Q
,
Nerlov
C
,
Frenette
PS
.
Lineage-biased hematopoietic stem cells are regulated by distinct niches
.
Dev Cell
.
2018
;
44
(
5
):
634
-
641.e4
.
32.
Tikhonova
AN
,
Dolgalev
I
,
Hu
H
, et al
.
The bone marrow microenvironment at single-cell resolution
.
Nature
.
2019
;
569
(
7755
):
222
-
228
.
33.
Nestorowa
S
,
Hamey
FK
,
Pijuan Sala
B
, et al
.
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
.
Blood
.
2016
;
128
(
8
):
e20
-
31
.
34.
Hernandez-Malmierca
P
,
Vonficht
D
,
Schnell
A
, et al
.
Antigen presentation safeguards the integrity of the hematopoietic stem cell pool
.
Cell Stem Cell
.
2022
;
29
(
5
):
760
-
775.e10
.
35.
Lynch
RW
,
Hawley
CA
,
Pellicoro
A
,
Bain
CC
,
Iredale
JP
,
Jenkins
SJ
.
An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias
.
J Leukoc Biol
.
2018
;
104
(
3
):
579
-
586
.
36.
Bleriot
C
,
Barreby
E
,
Dunsmore
G
, et al
.
A subset of Kupffer cells regulates metabolism through the expression of CD36
.
Immunity
.
2021
;
54
(
9
):
2101
-
2116.e6
.
37.
De Simone
G
,
Andreata
F
,
Bleriot
C
, et al
.
Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming
.
Immunity
.
2021
;
54
(
9
):
2089
-
2100.e8
.
38.
Liang
Y
,
Kaneko
K
,
Xin
B
, et al
.
Temporal analyses of postnatal liver development and maturation by single-cell transcriptomics
.
Dev Cell
.
2022
;
57
(
3
):
398
-
414.e5
.
39.
Hume
DA
,
Offermanns
S
,
Bonnavion
R
.
Contamination of isolated mouse Kupffer cells with liver sinusoidal endothelial cells
.
Immunity
.
2022
;
55
(
7
):
1139
-
1140
.
40.
Iannacone
M
,
Bleriot
C
,
Andreata
F
, et al
.
Response to contamination of isolated mouse Kupffer cells with liver sinusoidal endothelial cells
.
Immunity
.
2022
;
55
(
7
):
1141
-
1142
.
41.
Guilliams
M
,
Bonnardel
J
,
Haest
B
, et al
.
Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches
.
Cell
.
2022
;
185
(
2
):
379
-
396.e38
.
42.
Bonnardel
J
,
T'Jonck
W
,
Gaublomme
D
, et al
.
Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche
.
Immunity
.
2019
;
51
(
4
):
638
-
654.e9
.
43.
Sakai
M
,
Troutman
TD
,
Seidman
JS
, et al
.
Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity
.
Immunity
.
2019
;
51
(
4
):
655
-
670.e8
.
44.
Terkelsen
MK
,
Bendixen
SM
,
Hansen
D
, et al
.
Transcriptional dynamics of hepatic sinusoid-associated cells after liver injury
.
Hepatology
.
2020
;
72
(
6
):
2119
-
2133
.
45.
Kolodziejczyk
AA
,
Federici
S
,
Zmora
N
, et al
.
Acute liver failure is regulated by MYC- and microbiome-dependent programs
.
Nat Med
.
2020
;
26
(
12
):
1899
-
1911
.
46.
Zhou
Y
,
Adewale
F
,
Kim
S
, et al
.
Five-in-one: simultaneous isolation of multiple major liver cell types from livers of normal and NASH mice
.
J Cell Mol Med
.
2021
;
25
(
20
):
9878
-
9883
.
47.
Zong
C
,
Meng
Y
,
Ye
F
, et al
.
AIF1(+) CSF1R(+) MSCs, induced by TNF-alpha, act to generate an inflammatory microenvironment and promote hepatocarcinogenesis
.
Hepatology
.
2023
;
78
(
2
):
434
-
451
.
48.
Kumar
V
,
Donthireddy
L
,
Marvel
D
, et al
.
Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors
.
Cancer Cell
.
2017
;
32
(
5
):
654
-
668.e5
.
49.
Tang
PC
,
Chung
JY
,
Liao
J
, et al
.
Single-cell RNA sequencing uncovers a neuron-like macrophage subset associated with cancer pain
.
Sci Adv
.
2022
;
8
(
40
):
eabn5535
.
50.
Bain
CC
,
MacDonald
AS
.
The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity
.
Mucosal Immunol
.
2022
;
15
(
2
):
223
-
234
.
51.
Aegerter
H
,
Lambrecht
BN
,
Jakubzick
CV
.
Biology of lung macrophages in health and disease
.
Immunity
.
2022
;
55
(
9
):
1564
-
1580
.
52.
Tan
SY
,
Krasnow
MA
.
Developmental origin of lung macrophage diversity
.
Development
.
2016
;
143
(
8
):
1318
-
1327
.
53.
Irvine
KM
,
Caruso
M
,
Cestari
MF
, et al
.
Analysis of the impact of CSF-1 administration in adult rats using a novel Csf1r-mApple reporter gene
.
J Leukoc Biol
.
2020
;
107
(
2
):
221
-
235
.
54.
Sikkema
L
,
Ramirez-Suastegui
C
,
Strobl
DC
, et al
.
An integrated cell atlas of the lung in health and disease
.
Nat Med
.
2023
;
29
(
6
):
1563
-
1577
.
55.
Hume
PS
,
Gibbings
SL
,
Jakubzick
CV
, et al
.
Localization of macrophages in the human lung via design-based stereology
.
Am J Respir Crit Care Med
.
2020
;
201
(
10
):
1209
-
1217
.
56.
Baillie
JK
,
Arner
E
,
Daub
C
, et al
.
Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease
.
PLoS Genet
.
2017
;
13
(
3
):
e1006641
.
57.
Chakarov
S
,
Lim
HY
,
Tan
L
, et al
.
Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches
.
Science
.
2019
;
363
(
6432
):
eaau0964
.
58.
Schyns
J
,
Bai
Q
,
Ruscitti
C
, et al
.
Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung
.
Nat Commun
.
2019
;
10
(
1
):
3964
.
59.
Leach
SM
,
Gibbings
SL
,
Tewari
AD
, et al
.
Human and mouse transcriptome profiling identifies cross-species homology in pulmonary and lymph node mononuclear phagocytes
.
Cell Rep
.
2020
;
33
(
5
):
108337
.
60.
Vanneste
D
,
Bai
Q
,
Hasan
S
, et al
.
MafB-restricted local monocyte proliferation precedes lung interstitial macrophage differentiation
.
Nat Immunol
.
2023
;
24
(
5
):
827
-
840
.
61.
Ural
BB
,
Yeung
ST
,
Damani-Yokota
P
, et al
.
Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties
.
Sci Immunol
.
2020
;
5
(
45
):
eaax8756
.
62.
Fantom Consortium
.
A promoter-level mammalian expression atlas
.
Nature
.
2014
;
507
(
7493
):
462
-
470
.
63.
Cheung
MD
,
Erman
EN
,
Moore
KH
, et al
.
Resident macrophage subpopulations occupy distinct microenvironments in the kidney
.
JCI Insight
.
2022
;
7
(
20
):
e161078
.
64.
Sarkar
A
,
Stephens
M
.
Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis
.
Nat Genet
.
2021
;
53
(
6
):
770
-
777
.
65.
Abadie
K
,
Pease
NA
,
Wither
MJ
,
Kueh
HY
.
Order by chance: origins and benefits of stochasticity in immune cell fate control
.
Curr Opin Syst Biol
.
2019
;
18
:
95
-
103
.
66.
Hume
DA
.
Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression
.
Blood
.
2000
;
96
(
7
):
2323
-
2328
.
67.
Raj
A
,
van Oudenaarden
A
.
Nature, nurture, or chance: stochastic gene expression and its consequences
.
Cell
.
2008
;
135
(
2
):
216
-
226
.
68.
Helft
J
,
Bottcher
J
,
Chakravarty
P
, et al
.
GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macrophages and dendritic cells
.
Immunity
.
2015
;
42
(
6
):
1197
-
1211
.
69.
Shalek
AK
,
Satija
R
,
Adiconis
X
, et al
.
Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
.
Nature
.
2013
;
498
(
7453
):
236
-
240
.
70.
Shalek
AK
,
Satija
R
,
Shuga
J
, et al
.
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
.
Nature
.
2014
;
510
(
7505
):
363
-
369
.
71.
Ravasi
T
,
Wells
C
,
Forest
A
, et al
.
Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes
.
J Immunol
.
2002
;
168
(
1
):
44
-
50
.
72.
Ding
J
,
Sharon
N
,
Bar-Joseph
Z
.
Temporal modelling using single-cell transcriptomics
.
Nat Rev Genet
.
2022
;
23
(
6
):
355
-
368
.
73.
Jenkins
SJ
,
Allen
JE
.
The expanding world of tissue-resident macrophages
.
Eur J Immunol
.
2021
;
51
(
8
):
1882
-
1896
.
74.
Ke
M
,
Elshenawy
B
,
Sheldon
H
,
Arora
A
,
Buffa
FM
.
Single cell RNA-sequencing: a powerful yet still challenging technology to study cellular heterogeneity
.
Bioessays
.
2022
;
44
(
11
):
e2200084
.
75.
Grabski
IN
,
Street
K
,
Irizarry
RA
.
Significance analysis for clustering with single-cell RNA-sequencing data
.
Nat Methods
.
2023
;
20
(
8
):
1196
-
1202
.
76.
Xi
NM
,
Li
JJ
.
Benchmarking computational doublet-detection methods for single-cell RNA sequencing data
.
Cell Syst
.
2021
;
12
(
2
):
176
-
194.e6
.
77.
Freeman
TC
,
Horsewell
S
,
Patir
A
, et al
.
Graphia: a platform for the graph-based visualisation and analysis of high dimensional data
.
PLoS Comput Biol
.
2022
;
18
(
7
):
e1010310
.
78.
Reshef
YA
,
Rumker
L
,
Kang
JB
, et al
.
Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics
.
Nat Biotechnol
.
2022
;
40
(
3
):
355
-
363
.
79.
Van Hove
H
,
Martens
L
,
Scheyltjens
I
, et al
.
A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment
.
Nat Neurosci
.
2019
;
22
(
6
):
1021
-
1035
.
80.
Wu
YE
,
Pan
L
,
Zuo
Y
,
Li
X
,
Hong
W
.
Detecting activated cell populations using single-cell RNA-seq
.
Neuron
.
2017
;
96
(
2
):
313
-
329.e6
.
81.
Koenitzer
JR
,
Wu
H
,
Atkinson
JJ
,
Brody
SL
,
Humphreys
BD
.
Single-nucleus RNA-sequencing profiling of mouse lung. Reduced dissociation bias and improved rare cell-type detection compared with single-cell RNA sequencing
.
Am J Respir Cell Mol Biol
.
2020
;
63
(
6
):
739
-
747
.
82.
Stewart
TA
,
Hughes
K
,
Hume
DA
,
Davis
FM
.
Developmental stage-specific distribution of macrophages in mouse mammary gland
.
Front Cell Dev Biol
.
2019
;
7
:
250
.
83.
Sehgal
A
,
Donaldson
DS
,
Pridans
C
,
Sauter
KA
,
Hume
DA
,
Mabbott
NA
.
The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche
.
Nat Commun
.
2018
;
9
(
1
):
1272
.
You do not currently have access to this content.
Sign in via your Institution