• In DLBCLs with MYD88L265P and CD79BY196F alterations, MYD88L265P selectively increased proximal BCR signaling and survival via DOCK8.

  • MYD88L265P/DOCK8–enhanced proximal BCR signaling is a basis for the increased sensitivity of MYD88L265P/CD79BY196F DLBCLs to BTK blockade.

Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease with at least 5 recognized molecular subtypes. Cluster 5 (C5)/MCD tumors frequently exhibit concurrent alterations in the toll-like receptor (TLR) and B-cell receptor (BCR) pathway members, MYD88L265P and CD79B, and have a less favorable prognosis. In healthy B cells, the synergy between TLR and BCR signaling pathways integrates innate and adaptive immune responses and augments downstream NF-κB activation. In addition, physiologic TLR9 pathway engagement via MYD88, protein tyrosine kinase 2 (PYK2), and dedicator of cytokinesis 8 (DOCK8) increases proximal BCR signaling in healthy murine B cells. Although C5/MCD DLBCLs are selectively sensitive to Bruton tyrosine kinase (BTK) inhibition in in vitro studies and certain clinical trials, the role of mutated MYD88 in proximal BCR signaling remains undefined. Using engineered DLBCL cell line models, we found that concurrent MYD88L265P and CD79B alterations significantly increased the magnitude and duration of proximal BCR signaling, at the level of spleen tyrosine kinase and BTK, and augmented PYK2-dependent DOCK8 phosphorylation. MYD88L265P DLBCLs have significantly increased colocalization of DOCK8 with both MYD88 and the proximal BCR-associated Src kinase, LYN, in comparison with MYD88WT DLBCLs, implicating DOCK8 in MYD88L265P/proximal BCR cross talk. Additionally, DOCK8 depletion selectively decreased proximal BCR signaling, cellular proliferation, and viability of DLBCLs with endogenous MYD88L265P/CD79BY196F alterations and increased the efficacy of BTK blockade in these lymphomas. Therefore, MYD88L265P/DOCK8-enhanced proximal BCR signaling is a likely mechanism for the increased sensitivity of C5/MCD DLBCLs to BTK blockade.

1.
Sehn
LH
,
Salles
G
.
Diffuse large b-cell lymphoma
.
N Engl J Med
.
2021
;
384
(
9
):
842
-
858
.
2.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
3.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large b-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
4.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
5.
Braggio
E
,
Van Wier
S
,
Ojha
J
, et al
.
Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas
.
Clin Cancer Res
.
2015
;
21
(
17
):
3986
-
3994
.
6.
Chapuy
B
,
Roemer
MG
,
Stewart
C
, et al
.
Targetable genetic features of primary testicular and primary central nervous system lymphomas
.
Blood
.
2016
;
127
(
7
):
869
-
881
.
7.
Kraan
W
,
van Keimpema
M
,
Horlings
HM
, et al
.
High prevalence of oncogenic MYD88 and CD79B mutations in primary testicular diffuse large B-cell lymphoma
.
Leukemia
.
2014
;
28
(
3
):
719
-
720
.
8.
Oishi
N
,
Kondo
T
,
Nakazawa
T
, et al
.
High prevalence of the MYD88 mutation in testicular lymphoma: immunohistochemical and genetic analyses
.
Pathol Int
.
2015
;
65
(
10
):
528
-
535
.
9.
Vater
I
,
Montesinos-Rongen
M
,
Schlesner
M
, et al
.
The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing
.
Leukemia
.
2015
;
29
(
3
):
677
-
685
.
10.
Radke
J
,
Ishaque
N
,
Koll
R
, et al
.
The genomic and transcriptional landscape of primary central nervous system lymphoma
.
Nat Commun
.
2022
;
13
(
1
):
2558
.
11.
Reth
M
,
Wienands
J
.
Initiation and processing of signals from the B cell antigen receptor
.
Annu Rev Immunol
.
1997
;
15
(
1
):
453
-
479
.
12.
Cambier
JC
,
Pleiman
CM
,
Clark
MR
.
Signal transduction by the B cell antigen receptor and its coreceptors
.
Annu Rev Immunol
.
1994
;
12
:
457
-
486
.
13.
Davis
RE
,
Ngo
VN
,
Lenz
G
, et al
.
Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma
.
Nature
.
2010
;
463
(
7277
):
88
-
92
.
14.
Gazumyan
A
,
Reichlin
A
,
Nussenzweig
MC
.
Ig beta tyrosine residues contribute to the control of B cell receptor signaling by regulating receptor internalization
.
J Exp Med
.
2006
;
203
(
7
):
1785
-
1794
.
15.
Akira
S
,
Takeda
K
.
Toll-like receptor signalling
.
Nat Rev Immunol
.
2004
;
4
(
7
):
499
-
511
.
16.
Vyncke
L
,
Bovijn
C
,
Pauwels
E
, et al
.
Reconstructing the TIR Side of the myddosome: a paradigm for TIR-TIR interactions
.
Structure
.
2016
;
24
(
3
):
437
-
447
.
17.
Ngo
VN
,
Young
RM
,
Schmitz
R
, et al
.
Oncogenically active MYD88 mutations in human lymphoma
.
Nature
.
2011
;
470
(
7332
):
115
-
119
.
18.
Avbelj
M
,
Wolz
OO
,
Fekonja
O
, et al
.
Activation of lymphoma-associated MyD88 mutations via allostery-induced TIR-domain oligomerization
.
Blood
.
2014
;
124
(
26
):
3896
-
3904
.
19.
de Groen
RAL
,
Schrader
AMR
,
Kersten
MJ
,
Pals
ST
,
Vermaat
JSP
.
MYD88 in the driver's seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications
.
Haematologica
.
2019
;
104
(
12
):
2337
-
2348
.
20.
Kawai
T
,
Akira
S
.
Signaling to NF-kappaB by toll-like receptors
.
Trends Mol Med
.
2007
;
13
(
11
):
460
-
469
.
21.
Knittel
G
,
Liedgens
P
,
Korovkina
D
, et al
.
B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice
.
Blood
.
2016
;
127
(
22
):
2732
-
2741
.
22.
Sewastianik
T
,
Guerrera
ML
,
Adler
K
, et al
.
Human MYD88L265P is insufficient by itself to drive neoplastic transformation in mature mouse B cells
.
Blood Adv
.
2019
;
3
(
21
):
3360
-
3374
.
23.
Pindzola
GM
,
Razzaghi
R
,
Tavory
RN
, et al
.
Aberrant expansion of spontaneous splenic germinal centers induced by hallmark genetic lesions of aggressive lymphoma
.
Blood
.
2022
;
140
(
10
):
1119
-
1131
.
24.
Flumann
R
,
Rehkamper
T
,
Nieper
P
, et al
.
An autochthonous mouse model of Myd88- and BCL2-driven diffuse large B-cell lymphoma reveals actionable molecular vulnerabilities
.
Blood Cancer Discov
.
2021
;
2
(
1
):
70
-
91
.
25.
Wang
JQ
,
Jeelall
YS
,
Humburg
P
, et al
.
Synergistic cooperation and crosstalk between MYD88(L265P) and mutations that dysregulate CD79B and surface IgM
.
J Exp Med
.
2017
;
214
(
9
):
2759
-
2776
.
26.
Chaturvedi
A
,
Dorward
D
,
Pierce
SK
.
The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens
.
Immunity
.
2008
;
28
(
6
):
799
-
809
.
27.
Monroe
JG
,
Keir
ME
.
Bridging toll-like- and B cell-receptor signaling: meet me at the autophagosome
.
Immunity
.
2008
;
28
(
6
):
729
-
731
.
28.
Phelan
JD
,
Young
RM
,
Webster
DE
, et al
.
A multiprotein supercomplex controlling oncogenic signalling in lymphoma
.
Nature
.
2018
;
560
(
7718
):
387
-
391
.
29.
Jabara
HH
,
McDonald
DR
,
Janssen
E
, et al
.
DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation
.
Nat Immunol
.
2012
;
13
(
6
):
612
-
620
.
30.
Randall
KL
,
Lambe
T
,
Johnson
AL
, et al
.
Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production
.
Nat Immunol
.
2009
;
10
(
12
):
1283
-
1291
.
31.
Kearney
CJ
,
Randall
KL
,
Oliaro
J
.
DOCK8 regulates signal transduction events to control immunity
.
Cell Mol Immunol
.
2017
;
14
(
5
):
406
-
411
.
32.
Zhang
Q
,
Davis
JC
,
Lamborn
IT
, et al
.
Combined immunodeficiency associated with DOCK8 mutations
.
N Engl J Med
.
2009
;
361
(
21
):
2046
-
2055
.
33.
Engelhardt
KR
,
McGhee
S
,
Winkler
S
, et al
.
Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome
.
J Allergy Clin Immunol
.
2009
;
124
(
6
):
1289
-
1302.e4
.
34.
Biggs
CM
,
Keles
S
,
Chatila
TA
.
DOCK8 deficiency: insights into pathophysiology, clinical features and management
.
Clin Immunol
.
2017
;
181
(
1
):
75
-
82
.
35.
Cote
JF
,
Vuori
K
.
GEF what? Dock180 and related proteins help Rac to polarize cells in new ways
.
Trends Cell Biol
.
2007
;
17
(
8
):
383
-
393
.
36.
Werner
M
,
Jumaa
H
.
DOCKing innate to adaptive signaling for persistent antibody production
.
Nat Immunol
.
2012
;
13
(
6
):
525
-
526
.
37.
Sun
X
,
Wang
J
,
Qin
T
, et al
.
Dock8 regulates BCR signaling and activation of memory B cells via WASP and CD19
.
Blood Adv
.
2018
;
2
(
4
):
401
-
413
.
38.
Bonnette
PC
,
Robinson
BS
,
Silva
JC
, et al
.
Phosphoproteomic characterization of PYK2 signaling pathways involved in osteogenesis
.
J Proteomics
.
2010
;
73
(
7
):
1306
-
1320
.
39.
Wright
KT
,
Weirather
JL
,
Jiang
S
, et al
.
Diffuse large B-cell lymphomas have spatially defined, tumor immune microenvironments revealed by high-parameter imaging
.
Blood Adv
.
2023
;
7
(
16
):
4633
-
4646
.
40.
Yang
G
,
Buhrlage
SJ
,
Tan
L
, et al
.
HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib
.
Blood
.
2016
;
127
(
25
):
3237
-
3252
.
41.
Chapuy
B
,
McKeown
MR
,
Lin
CY
, et al
.
Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma
.
Cancer Cell
.
2013
;
24
(
6
):
777
-
790
.
42.
Hegazy
M
,
Cohen-Barak
E
,
Koetsier
JL
, et al
.
Proximity ligation assay for detecting protein-protein interactions and protein modifications in cells and tissues in situ
.
Curr Protoc Cell Biol
.
2020
;
89
(
1
):
e115
.
43.
Chen
L
,
Monti
S
,
Juszczynski
P
, et al
.
SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas
.
Cancer Cell
.
2013
;
23
(
6
):
826
-
838
.
44.
Bojarczuk
K
,
Wienand
K
,
Ryan
JA
, et al
.
Targeted inhibition of PI3Kalpha/delta is synergistic with BCL-2 blockade in genetically defined subtypes of DLBCL
.
Blood
.
2019
;
133
(
1
):
70
-
80
.
45.
Rawlings
DJ
,
Schwartz
MA
,
Jackson
SW
,
Meyer-Bahlburg
A
.
Integration of B cell responses through toll-like receptors and antigen receptors
.
Nat Rev Immunol
.
2012
;
12
(
4
):
282
-
294
.
46.
Suthers
AN
,
Sarantopoulos
S
.
TLR7/TLR9- and B cell receptor-signaling crosstalk: promotion of potentially dangerous B cells
.
Front Immunol
.
2017
;
8
:
775
.
47.
Pone
EJ
,
Zhang
J
,
Mai
T
, et al
.
BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-kappaB pathway
.
Nat Commun
.
2012
;
3
:
767
.
48.
Munshi
M
,
Liu
X
,
Chen
JG
, et al
.
SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas
.
Blood Cancer J
.
2020
;
10
(
1
):
12
.
49.
Lacy
SE
,
Barrans
SL
,
Beer
PA
, et al
.
Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report
.
Blood
.
2020
;
135
(
20
):
1759
-
1771
.
50.
Wilson
WH
,
Wright
GW
,
Huang
DW
, et al
.
Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL
.
Cancer Cell
.
2021
;
39
(
12
):
1643
-
1653.e3
.
51.
Shen
J
,
Liu
J
.
Bruton's tyrosine kinase inhibitors in the treatment of primary central nervous system lymphoma: a mini-review
.
Front Oncol
.
2022
;
12
:
1034668
.
52.
Zhang
J
,
Fu
L
,
Shen
B
, et al
.
Assessing IRAK4 functions in ABC DLBCL by IRAK4 kinase inhibition and protein degradation
.
Cell Chem Biol
.
2020
;
27
(
12
):
1500
-
1509.e13
.
53.
Randall
KL
,
Chan
SS
,
Ma
CS
, et al
.
DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice
.
J Exp Med
.
2011
;
208
(
11
):
2305
-
2320
.
54.
Lambe
T
,
Crawford
G
,
Johnson
AL
, et al
.
DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory
.
Eur J Immunol
.
2011
;
41
(
12
):
3423
-
3435
.
55.
Tangye
SG
,
Pillay
B
,
Randall
KL
, et al
.
Dedicator of cytokinesis 8-deficient CD4(+) T cells are biased to a T(H)2 effector fate at the expense of T(H)1 and T(H)17 cells
.
J Allergy Clin Immunol
.
2017
;
139
(
3
):
933
-
949
.
56.
Singh
AK
,
Eken
A
,
Hagin
D
, et al
.
DOCK8 regulates fitness and function of regulatory T cells through modulation of IL-2 signaling
.
JCI Insight
.
2017
;
2
(
19
):
e94275
.
57.
Randall
KL
,
Law
HD
,
Ziolkowski
AF
,
Wirasinha
RC
,
Goodnow
CC
,
Daley
SR
.
DOCK8 deficiency diminishes thymic T-regulatory cell development but not thymic deletion
.
Clin Transl Immunology
.
2021
;
10
(
1
):
e1236
.
You do not currently have access to this content.
Sign in via your Institution