• Chronic stimulation of CD28-based CARs drives T cells to become exhausted, but 41BB-based CARs direct a novel state of T-cell dysfunction.

  • 41BB-driven T-cell dysfunction results from reactivation of the transcription factor FOXO3, and suppressing FOXO3 improves T-cell function.

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have demonstrated impressive activity against relapsed or refractory B-cell cancers yet fail to induce durable remissions for nearly half of all patients treated. Enhancing the efficacy of this therapy requires detailed understanding of the molecular circuitry that restrains CAR-driven antitumor T-cell function. We developed and validated an in vitro model that drives T-cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains, central components of CAR structure and function, contribute to T-cell failure. We found that chronic activation of CD28-based CARs results in activation of classical T-cell exhaustion programs and development of dysfunctional cells that bear the hallmarks of exhaustion. In contrast, 41BB-based CARs activate a divergent molecular program and direct differentiation of T cells into a novel cell state. Interrogation using CAR T cells from a patient with progressive lymphoma confirmed the activation of this novel program in a failing clinical product. Furthermore, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is directly responsible for impairing CAR T-cell function. These findings identify that costimulatory domains are critical regulators of CAR-driven T-cell failure and that targeted interventions are required to overcome costimulation-dependent dysfunctional programs.

1.
Brown
CE
,
Mackall
CL
.
CAR T cell therapy: inroads to response and resistance
.
Nat Rev Immunol
.
2019
;
19
(
2
):
73
-
74
.
2.
Abramson
JS
,
Palomba
ML
,
Gordon
LI
, et al
.
Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
.
Lancet
.
2020
;
396
(
10254
):
839
-
852
.
3.
Locke
FL
,
Rossi
JM
,
Neelapu
SS
, et al
.
Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
19
):
4898
-
4911
.
4.
Nastoupil
LJ
,
Jain
MD
,
Feng
L
, et al
.
Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US Lymphoma CAR T Consortium
.
J Clin Oncol
.
2020
;
38
(
27
):
3119
-
3128
.
5.
Wherry
EJ
,
Kurachi
M
.
Molecular and cellular insights into T cell exhaustion
.
Nat Rev Immunol
.
2015
;
15
(
8
):
486
-
499
.
6.
Good
CR
,
Aznar
MA
,
Kuramitsu
S
, et al
.
An NK-like CAR T cell transition in CAR T cell dysfunction
.
Cell
.
2021
;
184
(
25
):
6081
-
6100.e26
.
7.
Long
AH
,
Haso
WM
,
Shern
JF
, et al
.
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
.
Nat Med
.
2015
;
21
(
6
):
581
-
590
.
8.
Lynn
RC
,
Weber
EW
,
Sotillo
E
, et al
.
c-Jun overexpression in CAR T cells induces exhaustion resistance
.
Nature
.
2019
;
576
(
7786
):
293
-
300
.
9.
Singh
N
,
Lee
YG
,
Shestova
O
, et al
.
Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction
.
Cancer Discov
.
2020
;
10
(
4
):
552
-
567
.
10.
Cappell
KM
,
Kochenderfer
JN
.
A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains
.
Nat Rev Clin Oncol
.
2021
;
18
(
11
):
715
-
727
.
11.
Selli
ME
,
Landmann
JH
,
Arveseth
C
,
Singh
N
.
Inducing T cell dysfunction by chronic stimulation of CAR-engineered T cells targeting cancer cells in suspension cultures
.
STAR Protoc
.
2023
;
4
(
1
):
101954
.
12.
Berrien-Elliott
MM
,
Foltz
JA
,
Russler-Germain
DA
, et al
.
Hematopoietic cell transplantation donor-derived memory-like NK cells functionally persist after transfer into patients with leukemia
.
Sci Transl Med
.
2022
;
14
(
633
):
eabm1375
.
13.
Robinson
MD
,
McCarthy
DJ
,
Smyth
GK
.
edgeR: a bioconductor package for differential expression analysis of digital gene expression data
.
Bioinformatics
.
2010
;
26
(
1
):
139
-
140
.
14.
Corces
MR
,
Trevino
AE
,
Hamilton
EG
, et al
.
An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues
.
Nat Methods
.
2017
;
14
(
10
):
959
-
962
.
15.
Langmead
B
,
Trapnell
C
,
Pop
M
,
Salzberg
SL
.
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
.
Genome Biol
.
2009
;
10
(
3
):
R25
.
16.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
17.
Finak
G
,
McDavid
A
,
Yajima
M
, et al
.
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
.
Genome Biol
.
2015
;
16
:
278
.
18.
Qiu
X
,
Mao
Q
,
Tang
Y
, et al
.
Reversed graph embedding resolves complex single-cell trajectories
.
Nat Methods
.
2017
;
14
(
10
):
979
-
982
.
19.
Aibar
S
,
Gonzalez-Blas
CB
,
Moerman
T
, et al
.
SCENIC: single-cell regulatory network inference and clustering
.
Nat Methods
.
2017
;
14
(
11
):
1083
-
1086
.
20.
Van de Sande
B
,
Flerin
C
,
Davie
K
, et al
.
A scalable SCENIC workflow for single-cell gene regulatory network analysis
.
Nat Protoc
.
2020
;
15
(
7
):
2247
-
2276
.
21.
Moerman
T
,
Aibar Santos
S
,
Bravo Gonzalez-Blas
C
, et al
.
GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks
.
Bioinformatics
.
2019
;
35
(
12
):
2159
-
2161
.
22.
Brinkman
EK
,
Chen
T
,
Amendola
M
,
van Steensel
B
.
Easy quantitative assessment of genome editing by sequence trace decomposition
.
Nucleic Acids Res
.
2014
;
42
(
22
):
e168
.
23.
Kawalekar
OU
,
O'Connor
RS
,
Fraietta
JA
, et al
.
Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells
.
Immunity
.
2016
;
44
(
2
):
380
-
390
.
24.
Martinez
GJ
,
Pereira
RM
,
Aijo
T
, et al
.
The transcription factor NFAT promotes exhaustion of activated CD8(+) T cells
.
Immunity
.
2015
;
42
(
2
):
265
-
278
.
25.
Chen
J
,
Lopez-Moyado
IF
,
Seo
H
, et al
.
NR4A transcription factors limit CAR T cell function in solid tumours
.
Nature
.
2019
;
567
(
7749
):
530
-
534
.
26.
Boroughs
AC
,
Larson
RC
,
Marjanovic
ND
, et al
.
A distinct transcriptional program in human CAR T cells bearing the 4-1BB signaling domain revealed by scRNA-seq
.
Mol Ther
.
2020
;
28
(
12
):
2577
-
2592
.
27.
Guo
X
,
Zhang
Y
,
Zheng
L
, et al
.
Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing
.
Nat Med
.
2018
;
24
(
7
):
978
-
985
.
28.
Li
H
,
van der Leun
AM
,
Yofe
I
, et al
.
Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma
.
Cell
.
2019
;
176
(
4
):
775
-
789.e18
.
29.
Zhang
L
,
Yu
X
,
Zheng
L
, et al
.
Lineage tracking reveals dynamic relationships of T cells in colorectal cancer
.
Nature
.
2018
;
564
(
7735
):
268
-
272
.
30.
Zheng
C
,
Zheng
L
,
Yoo
JK
, et al
.
Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing
.
Cell
.
2017
;
169
(
7
):
1342
-
1356.e16
.
31.
Pauken
KE
,
Sammons
MA
,
Odorizzi
PM
, et al
.
Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade
.
Science
.
2016
;
354
(
6316
):
1160
-
1165
.
32.
Sen
DR
,
Kaminski
J
,
Barnitz
RA
, et al
.
The epigenetic landscape of T cell exhaustion
.
Science
.
2016
;
354
(
6316
):
1165
-
1169
.
33.
Bengsch
B
,
Ohtani
T
,
Khan
O
, et al
.
Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells
.
Immunity
.
2018
;
48
(
5
):
1029
-
1045.e5
.
34.
Mathewson
ND
,
Ashenberg
O
,
Tirosh
I
, et al
.
Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis
.
Cell
.
2021
;
184
(
5
):
1281
-
1298.e26
.
35.
Zheng
L
,
Qin
S
,
Si
W
, et al
.
Pan-cancer single-cell landscape of tumor-infiltrating T cells
.
Science
.
2021
;
374
(
6574
):
abe6474
.
36.
Hedrick
SM
,
Hess Michelini
R
,
Doedens
AL
,
Goldrath
AW
,
Stone
EL
.
FOXO transcription factors throughout T cell biology
.
Nat Rev Immunol
.
2012
;
12
(
9
):
649
-
661
.
37.
Harada
Y
,
Harada
Y
,
Elly
C
, et al
.
Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells
.
J Exp Med
.
2010
;
207
(
7
):
1381
-
1391
.
38.
Kerdiles
YM
,
Stone
EL
,
Beisner
DR
, et al
.
Foxo transcription factors control regulatory T cell development and function
.
Immunity
.
2010
;
33
(
6
):
890
-
904
.
39.
Feucht
J
,
Sun
J
,
Eyquem
J
, et al
.
Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency
.
Nat Med
.
2019
;
25
(
1
):
82
-
88
.
40.
Daniel
B
,
Yost
KE
,
Hsiung
S
, et al
.
Divergent clonal differentiation trajectories of T cell exhaustion
.
Nat Immunol
.
2022
;
23
(
11
):
1614
-
1627
.
41.
Giles
JR
,
Ngiow
SF
,
Manne
S
, et al
.
Shared and distinct biological circuits in effector, memory and exhausted CD8(+) T cells revealed by temporal single-cell transcriptomics and epigenetics
.
Nat Immunol
.
2022
;
23
(
11
):
1600
-
1613
.
42.
Jackson
Z
,
Hong
C
,
Schauner
R
, et al
.
Sequential single-cell transcriptional and protein marker profiling reveals TIGIT as a marker of CD19 CAR-T cell dysfunction in patients with non-Hodgkin lymphoma
.
Cancer Discov
.
2022
;
12
(
8
):
1886
-
1903
.
43.
Wilson
TL
,
Kim
H
,
Chou
CH
, et al
.
Common trajectories of highly effective CD19-specific CAR T cells identified by endogenous T-cell receptor lineages
.
Cancer Discov
.
2022
;
12
(
9
):
2098
-
2119
.
44.
van Grevenynghe
J
,
Procopio
FA
,
He
Z
, et al
.
Transcription factor FOXO3a controls the persistence of memory CD4(+) T cells during HIV infection
.
Nat Med
.
2008
;
14
(
3
):
266
-
274
.
45.
Sullivan
JA
,
Kim
EH
,
Plisch
EH
,
Peng
SL
,
Suresh
M
.
FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms
.
PLoS Pathog
.
2012
;
8
(
2
):
e1002533
.
46.
Sullivan
JA
,
Kim
EH
,
Plisch
EH
,
Suresh
M
.
FOXO3 regulates the CD8 T cell response to a chronic viral infection
.
J Virol
.
2012
;
86
(
17
):
9025
-
9034
.
47.
Haradhvala
NJ
,
Leick
MB
,
Maurer
K
, et al
.
Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma
.
Nat Med
.
2022
;
28
(
9
):
1848
-
1859
.
48.
Good
Z
,
Spiegel
JY
,
Sahaf
B
, et al
.
Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy
.
Nat Med
.
2022
;
28
(
9
):
1860
-
1871
.
49.
Sheih
A
,
Voillet
V
,
Hanafi
LA
, et al
.
Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy
.
Nat Commun
.
2020
;
11
(
1
):
219
.
You do not currently have access to this content.
Sign in via your Institution