Introduction: T cell immunoreceptor with Ig and ITIM domains (TIGIT) is a surface receptor mainly expressed by CD8+, regulatory T lymphocytes and natural killer (NK) cells, but not by normal B cells. It performs as an inhibitory immune checkpoint, activated through binding of CD155. TIGIT competes with CD226 for CD155 binding, resulting in opposite outcomes: while CD226 enhances cytotoxicity of T lymphocytes and NK cells, TIGIT exerts immunosuppressive effects. Whether TIGIT engagement triggers an alternative signaling cascade, or whether it simply prevents CD226 activation, remains an open point. Tumor-infiltrating T lymphocytes generally express high levels of the molecule, together with the other checkpoint inhibitor PD-1. On this basis, antagonist antibodies targeting TIGIT are under evaluation to restore immunity and treat cancer patients, alone or in various combinations.
Chronic lymphocytic leukemia (CLL), the most common adult leukemia, is characterized by a highly heterogeneous clinical outcome. Several molecular markers can help in stratifying patients, including the presence or absence of somatic mutations in B cell receptor, cytogenetic aberrations and single gene mutations. Interestingly, CLL cells express several T cell specific antigens, including CD5. A previous report indicates that, in CLL, TIGIT is expressed by circulating CD4+T cells, increasing during disease progression, while nothing is known about its expression on CLL cells.
Aim:This work was undertaken with the aim of studying expression of the TIGIT/CD226/CD155 axis in CLL.
Methods:We assembled a cohort of 101 primary CLL samples (40% females, mean age of 61). All patients were either untreated or had not received treatment in the 6 months prior to analysis. PBMC samples were tested for expression of TIGIT, CD155 and CD226 in both T and B subsets. A multiparametric flow cytometry strategy was designed, combining anti-TIGIT, anti-CD155 and anti-CD226 antibodies with a panel of B- (anti-CD19, anti-CD5, anti-CD38, anti-CD49d and anti-CD73) and T-mono/NK specific (anti-CD3, anti-CD8, anti-CD4, anti-CD14 and anti-CD56) markers. The number of TIGIT molecules on leukemic cells was estimated by interpolating values of mean fluorescence intensity (MFI) of each sample with that of PE-Quantibrite beads.
Results:CLL cells heterogeneously express surface TIGIT, ranging from 0.2 to 81% (mean value 20%, median 10%, SEM ±2.145). The estimated number of molecules per cell was in the range of 32.5-3571 (mean 1140, median 841.1, SEM ±83.6). Expression of TIGIT was independent of gender or age at diagnosis and there was no correlation between TIGIT levels and lymphocyte counts in peripheral blood. In contrast, in this cohort of untreated patients, we observed a significantly lower TIGIT expression in samples with advanced disease (RAI III-IV) compared to early stages (RAI 0-I). Accordingly, low TIGIT associated with unmutated (UM) IGHVgenes and with an unfavorable FISH profile (trisomy 12, deletion 17 and deletion 11 vs. deletion 13 or normal karyotype). Lower, although not significant, TIGIT levels were observed in NOTCH1-mutated CLL samples (n=11) compared to counterpart (n=89).
Looking at the T cell population, we observed overall higher TIGIT levels in the CD8+vs CD4+subset (mean %TIGIT+cells in CD8+56.7±1.8 vs 27.2±1.3 in CD4+). In line with reported observations, we found a modest but significant increase of TIGIT+T cells in advanced stage CLLs, at variance with what observed on the leukemic B cell side. Accordingly, we observed higher percentages of TIGIT+/CD4+cells in CLL samples carrying UM IGHVgenes.
CD226 and CD155 were more homogeneously expressed in all subsets without significant differences, both in CLL and T cell components.
Conclusions: This work shows that CLL cells express the immunomodulatory molecule TIGIT, particularly in the early stages of the disease in untreated patients. While further studies are needed to characterize its functional implications as well as treatment effect on TIGIT expression, it is tempting to speculate that TIGIT expression by CLL cells may serve to trigger an immunosuppressive behavior in these cells, which is no longer needed when the disease becomes advanced. This observation represents a starting point for future studies investigating the role of TIGIT in CLL and hints to a possible use of anti-TIGIT antibodies to target different cellular components of the disease.
Hoofd:iTeos Therapeutics: Employment. Coscia:Abbvie: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm Therapeutics: Research Funding. Gaidano:Sunesys: Consultancy, Honoraria; AbbVie: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Astra-Zeneca: Consultancy, Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Furman:Acerta Pharma: Consultancy; Beigene: Consultancy; Incyte: Consultancy; Janssen: Consultancy; Oncotracker: Consultancy; Pharmacyclics: Consultancy; Sunesis: Consultancy; TG Therapeutics: Consultancy; Verastem: Consultancy; Genentech: Consultancy; Abbvie: Consultancy; AstraZeneca: Consultancy. Deaglio:VelosBio Inc.: Research Funding; Verastem Inc: Research Funding; iTeos Therapeutics: Research Funding.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal