Acute myeloid leukemia (AML) exhibits large intrinsic variation in drug responsiveness due to its inherent heterogeneity. Therefore, it is important to understand the resistant mechanism in order to improve the treatment. In our previously study, the OCI-AML2-resistant cell lines were established to resist cytarabine (Ara-C) in the concentration of 50 µM (OCI-AML2 R50). The RNA-seq results showed that many genes changed in the resistant cells compared to wild type OCI-AML2 cells. One of the most remarkably decreased gene in resistant cells was HOXA11 (Homeobox A11). It is the part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor which regulates gene expression, morphogenesis, and differentiation. In this study, we have evaluated the importance of HOXA11 in AML chemoresistance. We found that knockdown of HOXA11 repressed the WT OCI-AML2 cell proliferation and increased the population of cells expressing CD123 and CD47 LSC (Leukemia stem cell) markers and enhanced the resistance to Ara-C in vitro, while overexpression of HOXA11 showed the reverse effect. These results support the idea that HOXA11 promotes drug sensitivity and apoptosis in AML. However, the result also showed that overexpression of HOXA11 repressed the OCI-AML2 R50 cell proliferation and enhanced the resistance. Therefore, HOXA11 plays opposite role in sensitive cells and resistant cells. We further investigated the mechanism for these effects. We found that knockdown of HOXA11 decreased the p53 gene expression and overexpression of HOXA11 increased the expression of p53 in OCI-AML2 and R50 cells. Further, in OCI-AML2 R50 cells p53 has a hotspot mutation in DNA binding site and studies have shown that p53 mutation enhance cancer cell survival and chemoresistance. Therefore, our study shows dual roles for HOXA11 in cell survival. In p53 wild type parental AML2 cells, HOXA11 induces wild type p53 expression to enhance drug sensitivity while in resistant cell, HOXA11 promotes mutant p53 expression and enhances the resistance of chemotherapy.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution