Gfi1 is a zinc-finger transcriptional repressor that plays an important role in hematopoiesis. When aberrantly activated, Gfi1 may function as a weak oncoprotein in the lymphoid system, but collaborate strongly with c-Myc in lymphomagenesis. c-Myc is a transcription factor that is frequently activated in human cancers including leukemia and lymphoma mainly due to its overexpression as a result of gene amplifications and chromosomal translocations. c-Myc overexpression may also result from stabilization of c-Myc protein, which is highly unstable and rapidly degraded through the ubiquitin-proteasome pathway. The mechanism by which Gfi1 collaborates with c-Myc in lymphomagenesis is incompletely understood. c-Myc activates gene expression by forming a heterodimeric complex with the partner protein Max, but may also repress target genes through interaction with transcription factor Miz-1. We previously showed that Gfi1 indirectly interacts with c-Myc through Miz-1 and collaborates with c-Myc to repress CDK inhibitors p21Cip1 and p15Ink4B. In this study, we show that Gfi1 augmented the level of c-Myc protein transiently expressed in Hela cells and the levels of MycER fusion protein stably expressed in the mouse pro-B Ba/F3 and myeloid 32D cells. The C-terminal ZF domains of Gfi1, but not its transcriptional repression and DNA binding activities, were required for c-Myc upregulation. Notably, although Miz-1 has been shown to stabilize c-Myc protein, the expression of c-Myc V394D mutant, which is defective in Miz-1 interaction, was still upregulated by Gfi1, suggesting that Gfi1-mediated c-Myc upregulation was independent of Miz-1 interaction. We further show that Gfi1 overexpression led to reduced polyubiquitination and increased stability of c-Myc protein. Interestingly, the levels of endogenous c-Myc mRNA and protein were augmented upon induction of Gfi1 expression in Ba/F3 and Burkitt lymphoma Ramos cells transduced with the doxycycline-inducible Gfi1 lentiviral construct, but reduced in Gfi1-knocked down human leukemic HL60 and U937 cells. Additionally, targeted deletion of Gfi1 resulted in reduced c-Myc expression in mouse lineage negative bone marrow cells, which was associated with a decline in the expression of c-Myc-activated target genes. The oncogenic potential of Myc derives from its ability to stimulate cell proliferation. Our results demonstrate that inducible expression of Gfi1 in Ba/F3 cells expressing MycER promoted Myc-driven cell cycle progression and proliferation. Thus, in addition to its role in c-Myc-mediated transcriptional repression, Gfi1 upregulates c-Myc expression at both mRNA and protein levels, leading to enhanced expression of c-Myc-activated genes and augmented cell proliferation driven by c-Myc. Together, these data may reveal a novel mechanism by which Gfi1 collaborates with c-Myc in lymphomagenesis.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal