Promoting donor T cell tolerance to host non-hematopoietic tissues remains the ultimate therapeutic goal in allogeneic hematopoietic stem cell transplantation (allo-HSCT). Dendritic cells (DCs) play dual functions in regulating alloimmunity. DCs can elicit alloreactive T cell responses to mediate graft-versus-host disease (GVHD), but are also implicated in reducing GVHD. In patients, the depletion of plasmacytoid DCs (pDCs) from donor BM grafts resulted in GVHD acceleration. On the other hand, acute GVHD causes complete failure of donor pDC reconstitution after allo-HSCT, and low levels of donor pDC correlate with significantly increased GVHD severity. Thus, the impairment of pDC reconstitution by GVHD may be responsible for the dysfunctional immune regulation. Delineation of the mechanism involved may allow therapeutic intervention to reduce GVHD and improve the efficacy of allo-HSCT. In this study, we demonstrate that alloreactive T cells produce GM-CSF to impair reconstitution of donor pDCs by inhibiting Flt3 expression and its-regulated transcription programs in DC progenitor cells. Using murine GVHD model, we confirmed GVHD severely impaired reconstitution of both donor pDCs and conventional DCs (cDCs). Adoptive transfer of donor-type pDCs rather than cDCs prevented the occurrence of severe GVHD in mice, suggesting donor pDC reconstitution is important to restore tolerance of donor T cells against host tissues. Flt3 is required to induce pDC production through a successive differentiation pathway: HSC → multiple potential progenitors (MPP) → common DC progenitors (CDP) → precursor DCs (pre-DCs). GVHD mice produced significantly less MPP, CDP and pre-DCs compared to normal donor mice and allogeneic mice receiving T cell-depleted BM. Ex vivo culture with Flt3 ligand (Flt3L) showed that those MPP and CDP derived from GVHD mice dramatically decreased the capacity to produce pDCs. Thus, GVHD not only causes decreased numbers of MPP and CDP but also their intrinsic defect in producing pDCs. While both MPP and CDP gave rise to similar numbers of pDCs within 3 days of culture with Flt3L, MPP produced 40-fold more pDCs than CDP by day 9 of culture. This indicates the impairment in GVHD MPP may have much more profound long-term impact on pDC reconstitution than that in CDP. Based on surface expression of Flt3, normal MPP contained two subsets: CD135high MPP and CD135mod MPP. CD135high MPP produced 4-fold more pDCs than CD135mod MPP. As compared to CD135mod MPP, CD135high MPP expressed lower levels of Ink4 family genes, which are cyclin-dependent inhibitors restraining cell proliferation and survival, suggesting that CD135high MPP represent earlier stage differentiated progenitors with greater proliferative capacity. Intriguingly, although GVHD mice generated similar amount of CD135mod MPP as did normal mice, they failed to reconstitute highly proliferative CD135high MPP. Thus, the failure of donor pDC reconstitution may largely result from GVHD-mediated inhibition of CD135high MPP. Alloreactive T cells are known to produce high levels of effector molecules, such as IFN-γ, TNF-α, GM-CSF and other cytolytic molecules. We observed that GVHD effector T cells significantly reduced the production of pDCs from Flt3L-induced normal MPP. Blocking GM-CSF using neutralizing antibody but not other effector molecules markedly inhibited this repressive effect of GVHD T cells on pDC production. GM-CSF dose-dependently decreased the expression of Flt3 and its-regulated transcription factors Irf8 and Tcf4, which are important for development of functional pDCs. However, GM-CSF failed to inhibit the conversion of SiglecH+ pre-pDCs into pDCs. These data suggest that alloreactive T cells produce GM-CSF to block pDC reconstitution by targeting DC progenitors (e.g., MPP and CDP). Building on these findings, we established a novel optimized culture system to produce adequate numbers of SiglecH+ pre-pDCs. Adoptive transfer of these pre-pDCs prevented GVHD, leading to significantly improved overall survival of mice undergoing allo-HSCT. Our findings identify for the first time that selective restoration of donor pDCs early after allo-HSCT may represent an effective cellular therapy to prevent GVHD. Further delineation of the molecular pathway(s) involved in GVHD inhibition of DC progenitors may allow the development of novel approaches to circumvent mortality and morbidity associated with GVHD.

Disclosures

Zheng:Pfizer: Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution