Background:

Single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) microarray analysis is a powerful tool to assess myelodysplastic bone marrow specimens for the presence of genomic gains and losses as well as loss of heterozygosity (LOH) (reviewed by Nybakken & Bagg, JMD 2014). Its application can be a valuable addition to conventional cytogenetic analysis and may be superior to FISH testing for MDS assessment. Currently, microarray analysis does not have widespread use in an MDS work-up. Several groups have demonstrated that flow cytometric analysis can detect phenotypic aberrations in bone marrow aspirates with cytopenias with more abnormalities identified in patients with poor prognosis or with multiple genotypic abnormalities (Loken et al. 2008; Cutler et al. 2011; van de Loosdrecht et al. 2013). In this study SNP microarray results were compared with conventional cytogenetic and MDS panel FISH findings as well as phenotypic abnormalities detected by flow cytometry.

Patients and Methods:

185 bone marrow aspirate specimens submitted to our laboratory for MDS work-up were analyzed by SNP/CGH studies. 36 of these (19.5%) were positive by SNP/CGH microarray analysis. 32 of the positive microarray cases (88.9%) were also analyzed by conventional cytogenetic studies, 35 (97.2%) by MDS FISH panel (5p, 7q, +8, -17p, -20q) and 31 (86.1%) were assessed by multidimensional flow cytometry (FCM) and were assigned an FCSS score (Wells et al. 2003).

Results:

Of the specimens in which the SNP/CGH array demonstrated genotypic abnormalities, 11/32 (34.4%) were negative by conventional cytogenetic analysis while 12/35 (34.3%) showed no abnormalities by MDS FISH panel analysis. SNP/CGH analysis revealed additional chromosomal gains and losses in 18/32 (56%) in comparison to cytogenetic analysis and in 22/35 (63%) in comparison to FISH analysis. Loss of Heterozygosity regions were detected in 28/36 cases (78%) with 96.4% (27/28) of these being larger than 2 Mb and 53% (19/28) spanning a significant chromosomal region (e.g. 1p, 5q, 7q and 17p) with known oncogenic and other MDS related genes.

In 10/32 cases (31%), microarray analysis was able to characterize the origin of marker chromosome material, previously reported with unknown identity by conventional cytogenetic analysis. In an additional subset of 10 out of 32 cases (31%), cytogenetic analysis was able to either characterize balanced translocations or low level sub-clonal abnormalities not identified by microarray analysis alone. In 11/36 (31%) microarray analysis was able to detect clonal heterogeneity and evolution. In none of the specimens did FISH analysis detected abnormalities not revealed by microarray analysis.

Flow cytometry performed on 31 of the array positive specimens revealed 6 to have >20% abnormal myeloid progenitor cells (classified as AML) while 23 the remaining 25 cases showed phenotypic abnormalities consistent with MDS (FCSS ranging from 1-6). In two specimens with a FCSS of 0, LOH regions on 16q or 1p and 21q were found, respectively, without the presence of numerical aberrations.

A FCSS score of 1 with minimal phenotypic abnormalities (n=3), was comprised of one specimen with del(5q), one with LOH of 7q and one with trisomy 8, 1p loss and 1q gain. Specimens with an FCSS of 2 (n=7) showed only one specimen classified as complex (5 or more abnormalities). The two FCSS =3 specimens showed del(5q) with del(12p) and several LOH regions, not complex findings. One of the 4 specimen with FCSS = 4 was classified as complex while the other 3 specimens showed monosomy 7, LOH of 7q or LOH of 1p, respectively. Genotypic abnormalities were also related to phenotypic abnormalities in 4/7 (57%) specimens in the FCSS = 5/6 category which revealed complex microarray findings. Half (3/6) of the AML class had complex findings as well.

Conclusions:

These results emphasize the additional value that CGH/SNP microarray analysis adds to conventional cytogenetic analysis. Our dataset confirms that FISH studies do not provide additional information for MDS specimens positive by cytogenetic and/or microarray analysis. Most importantly, a high correlation between our phenotypic flow cytometric scoring system for myeloid abnormalities and microarray findings has been identified. Higher flow cytometric abnormality scores correlate with increasing complexity of genomic abnormalities.

Disclosures

Zehentner:HematoLogics Inc.: Employment, Equity Ownership. Brodersen:Hematologics Inc.: Employment. Stephenson:Hematologics Inc.: Employment. de Baca:Hematologics Inc.: Employment. Menssen:Hematologics Inc.: Employment. Hammock:Hematologics Inc.: Employment. Johnson:Hematologics Inc.: Employment. Hartmann:Hematologics Inc.: Employment. Loken:Hematologics Inc.: Employment, Equity Ownership. Wells:HematoLogics Inc.: Employment, Equity Ownership.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution