Cooperation between several epigenetic modulators defines MLL-rearranged leukemia as an epigenomic-driven cancer. Wild type MLL catalyzes trimethylation of lysine 4 on histone 3 from the methyl donor S-adenosylmethionine (SAM) at homeobox and other genes important for hematopoiesis, promoting their expression during development. However, in MLL-rearrangements, its methyltransferase domain is ubiquitously lost and replaced with >70 known fusion partners. Many of these fusion partners recruit DOT1L, the only known SAM-dependent lysine methyltransferase responsible for the methylation of lysine 79 of histone 3 (H3K79)—a mark associated with most actively transcribed genes. Therefore, the recruitment of DOT1L by MLL fusion partners to MLL-target genes leads to aberrant H3K79 hypermethylation at these loci, resulting in inappropriate gene expression and leukemogenesis. DOT1L as a therapeutic target in MLL has been genetically validated by several groups, leading to the development of SAM-competitive small molecule inhibitors of DOT1L. These inhibitors exhibit excellent biochemical activity and selectivity, yet have delayed cellular activity and needing relatively high doses, with viability effects requiring 7-10 days and EC50s for H3K79 methylation depletion of 1-3 μM in cell lines. In animal studies, this translates to a modest survival benefit while requiring high doses through continuous osmotic subcutaneous infusion. Further optimization of DOT1L inhibitors is therefore needed. To date, development of DOT1L inhibitors has been slow, perhaps related to inadequacy of discovery chemistry assay technologies. All biochemical assays are radioactivity-based and are not miniaturizeable; low-throughput and delayed cellular effects of DOT1L inhibition all hamper the discovery of improved inhibitors. Therefore a pressing need towards improved DOT1L inhibitor discovery is a robust, accessible, and rapid profiling platform.

Toward this goal, we synthesized both FITC- and biotin-tagged DOT1L probe ligands. We confirmed by structural studies that binding of the probes were similar to our previously published inhibitor, depleted H3K79 methylation, and had antiproliferative effects in MLL-rearranged cell lines. We then utilized the probes to devise two non-radioactive, orthogonal biochemical assays to competitively profile putative inhibitors: one employing bead-based, proxmity fluorescence technology and the second using fluorescence polarization technology. These assays are robust and adaptable to high-throughput screening. We also designed a miniaturizable high-content imaging, immunofluorescence-based assay to assess the effect of DOT1L inhibitors on H3K79 methylation, reporting cellular IC50s after just four days of treatment. These three assays were validated against three known DOT1L inhibitors of different potencies, accurately differentiating between the compounds. Together, these orthogonal assays define an accessible platform capability to discover and optimize DOT1L inhibitors.

Our platform rank-ordered a library of SAM derivatives that we synthesized, indicating that large substituents off the SAM base does not affect DOT1L binding. We also explored other features of the SAM core structure, identifying several chlorinated probes that had increased cellular potency (IC50 values ~10nM) relative to the initial compounds published, without losing specificity for DOT1L. The inhibitory effect on MLL-target gene expression correlated to the H3K79me2 decrease reported in high content assay, validating that our high-content assay accurately reports on downstream biology seen later in treatment. And as expected, the high-content potencies of our chlorinated DOT1L probes also correlated to increased anti-proliferative effect in MLL cells.

Overall, we utilized chemistry, biology, and chemical biology tools to develop this profiling platform capability for more rapid discovery and optimization of small molecule DOT1L inhibitors. These assays can additionally be used to screen for non-SAM competitive inhibitors in high-throughput fashion. Furthermore, the DOT1L inhibitors and probes synthesized here (available as open-source tools) are useful in deeper mechanistic studies of the DOT1L complex and its role in MLL.

Disclosures

Armstrong:Epizyme: Consultancy.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution