A tight control of hematopoietic stem cell (HSC) quiescence, self-renewal and differentiation is crucial for lifelong blood production. The mechanisms behind this control are still poorly understood. Here we show that mitochondrial activity determines HSC fate decisions. A low mitochondrial membrane potential (Δψm) predicts long-term multi-lineage blood reconstitution capability, as we show for freshly isolated and in vitro-cultured HSCs. However, as in vivo both quiescent and cycling HSCs have comparable Δψm distributions, a low Δψm is not per se related to quiescence but is also found in dividing cells. Indeed, using divisional tracking, we demonstrate that daughter HSCs with a low Δψm maintain stemness, whereas daughter cells with high Δψm have undergone differentiation.

Strikingly, lowering the Δψm by chemical uncoupling of the electron transport chain leads to HSC self-renewal under culture conditions that normally induce rapid differentiation. Taken together, these data show that mitochondrial activity and fate choice are causally related in HSCs, and provides a novel method for identifying HSC potential after in vitro culture.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution